Verifying Flexible Timeline-Based Plans

A. Cestd and A. Finzi* and S. Fratinit and A. Orlandini * and E. Tronci?$
T ISTC-CNR, Via S.Martino della Battaglia 44, 1-00185 Rome, Italy
¥ DSF “Federico II” University, Via Cinthia, 1-80126 Naples, Italy
* DIA “Roma TRE” University, Via della Vasca Navale 79, 1-00146 Roritaly
§ DI “La Sapienza” University, Via Salaria 198, 1-00198 Rome, Italy

Abstract It is worth noting that such an approach allows us to

apply our V&V method on any timeline-based P&S sys-

The synthesis of flexible temporal plans has demonstrated tem (EUROPA (Frank and Jonsson 2003), IDEA (Jons-
wide applications p(_)ssmllltlesm het_erogeneous domains. We son et al. 2000), APSI-TRF (Cesta and Fratini 2008),
are currently studying the connection between plan genera- etc.) and even on flexible temporal plans manually gener-

tion and execution from the particular perspective of verifying i, .
a flexible plan before actual execution. This paper explores ated/modified (e.g., as done on MERs (Bresina et al. 2004)).

how a model-checking verification tool, based on UPPAAL- In this sense, our V&V method can be considegedheral
TIGA, is suitable for verifying flexible temporal plans. We while relies on dndependenthecker (with respect to plan-
first describe the formal model, the formalism, and the verifi- ners’ logic/reasoning/tool).

cation method. Furthermore we discuss our own approach Moreover, to show the feasibility and effectiveness of
and some preliminary empirical results using a real-world the approach we illustrate how tle@ntrollability problem
case study. (Vidal and Fargier 1999; Morris, Muscettola, and Vidal

2001) can be encoded and solved by deploying the proposed
. methodology. In real domains, tlw®ntrollability problem
Introduction arises when a generated temporally flexible plan is to be exe-

Timeline-based planning has been shown very effective Cuted by arexecutivesystem that manages controllable pro-
for applications in heterogeneous real-world domains — C€SSes in presence of exogenous events. In this scenario, th
see (Muscettola 1994; Jonsson et al. 2000; Frank and Jons-duration of the execution process is not completely under th
son 2003; Smith, Frank, and Jonsson 2000). A problem for control of the executive: the actions that are under theescop
a wider diffusion of such technology stems in the limited ©Of the executive should be chosen so that they do not con-

community that has been studying formal properties of this Strain uncontrollable events. Since (Vidal and Fargier9)99
planning approach. the problem of controllability has been addressed through
We are currently working at investigating the intercon- the témporal network which underlies a temporal plan rep-
nection between timeline-based planning and standard tech '€Sentation, here we show how our general purpose verifica-
niques for formal validation and verification. In an initial 1N method can be deployed to solve this relevant problem
work (Cesta et al. 2009b), we have listed several directions " fléxible plan verification.
for contamination between the two technologies, then we
have started addressing properties to develop a robust en-Related works. Closely related to our work is (Abdedaim
vironment for plan generation and execution. In particular et al. 2007), which proposes a mapping from temporal
among several V&V tasks, (Cesta et al. 2009b) identifies constraint-based planning problems into UPPAAL-TIGA
plan verification as a crucial task and proposes a generic game-reachability problems and presents a comparison of
model checking approach to accomplish such a task. the two planning approaches. Authors main concern was
Here, we propose a formal account of more recent work plan synthesis, while our current goal is flexible plans-veri
focusing on formal verification of flexible temporal plans. fication. The approach to problem modeling is similar, how-
Such a task can be deployed at different levels: namely, ever, in that work the flexibility issue remains open. Also
to validate either domain models or the planner, to ver- (Khatib, Muscettola, and Havelund 2001) propose a map-
ify the plan before execution, etc. The main contribution ping from interval-based temporal relations models (i.e.,
of the present paper is in presenting a formalization used Domain Description Language models from RAX-PS) to
for verification of flexible temporal plans that make use of timed automata models of UPPAAL (Larsen, Pettersson, and
Timed Game Automata (Maler, Pnueli, and Sifakis 1995) Yi 1997), but again flexible timeline verification was not
and UPPAAL-TIGA (Behrmann et al. 2007), a well known addressed. Furthermore, (Vidal 2000) proposes a mapping
model-checking tool. Then, the paper describes the verifica from Contingent Temporal Constraint Networfesgeneral-
tion method, presenting the exploited formalism and provid ization of STPUSs) talimed Game Automatahich is anal-
ing current results on its usage. ogous to the one exploited here. In this work, the use of

a model checker is suggested only to obtain a more com- temporal occurrence of a reference value implies that the re
pact representation and not to verify plan properties. In a lated target values hold on target timelines presenting tem
PDDL framework, (Howey and Long 2003) tackle verifica- poral intervals that satisfy the expected relations. A jan
tion of temporal plans, however, authors do not address flex- time flexibleif 37 L, € {7 Ly, ..., TL,} such that7 £; is
ible temporal plans, and more expressive temporal features time flexible.
At execution time, an executive cannot completely pre-
Timeline-Based Planning and Execution dict the behavior of the controlled physical system because
o o the duration of certain processes or the timing of exogenous
Timeline-based planning is an approach to temporal plan- events is outside of its control. In these cases, the values
ning (Muscettola 1994) where the generated plans are repre-for the state variables that are under the executive scope
SE!’]ted by SetS. Of t|mel|nes. .Ea.Ch tlmell!‘]e denoteS the evo- Shou'd be Chosen SO that they do not Constrain uncontro'-
lution of a particular feature in a dynamic system. A plan- |aple events. Thisontrollability problemis defined, e.g. in
n|ng doma|n enCOdeS the pOSSfIble evolutions of the .t|m5||ne (V|da| and Fargier 1999) Whemntingentand executab|e
whose time points have to satisfy temporal constraints, usu processes are distinguished. The contingent processes are
ally represented as Simple Temporal Problem (STP) restric- not controllable, hence with uncertain durations, instiad
tions. executable processes are started and ended by the executive
Here, we assume that the timelines in a planning do- system. Controllability issues have been formalized and in
main are incarnations of multi-valuedate variablesas in vestigated for the Simple Temporal Problems with Uncer-
(Muscettola 1994). A state variable is characterized by a fi- tainty (STPU) in (Vidal and Fargier 1999) where basic for-
nite set of values describing its temporal evolutions, and b mal notions are given fodynamiccontrollability (see also
minimal and maximal duration for each value. More for- (Morris and Muscettola 2005)). In the timeline-based frame
mally, a state variable is defined by a tuglg 7', D) where: work, we introduce the same controllability concept defined
@V = {vi,...,v,} is afinite set ofvalues (b) 7 : V — on STNU as follows. Given a plan as a set of flexible time-
2" is thevalue transitionfunction; (c)D : V — N x N linesPL = {TLy,...,TL,}, we callprojectionthe set of
is thevalue durationfunction, i.e. a function that specifies flexible timelinesP£’ = {7L£'y,...,TL’,} derived from
the allowed duration of values M (as an interva[ib, ub)). PL setting to a fixed value the temporal occurrence of each
Given a state variable, its associatgdelineis represented uncontrollable timepoint. Consideriny as the set of con-
as a sequence of values in the temporal intetvat [0, H). trollable flexible timepoints iP£, aschedulel is a map-
Each value satisfies previous (a-b-c) specifications anetisd ping7T : N — N whereT'(x) is calledtime of timepointz.
fined on a set of not overlapping time intervals contained in - A schedulds consistentf all value durations and synchro-
H. We suppose that adjacent intervals present different val- nizations are satisfied iR£. The history of a timepointx
ues. A timeline is saidompletely specifiedver the tem- w.r.t. a scheduld’, denoted byl'{< z}, specifies the time
poral horizon® when a sequence of non-overlapping val- of all uncontrollable timepoints that occur priorto An ex-
ued intervals exists and its union is equalio A time- ecution strategys is a mappingS : P — 7 whereP is the
line is saidtime-flexiblewhen is completely specified and set of projections an is the set of schedules. An execution
transition events are associated to temporal intervalgefio strategys is viable if S(p) (denoted alsd,) is consistent
and upper bounds are given for them), instead of exact tem- for each projectio. Thus, a flexible plarP£ is dynami-
poral occurrences. In other words, a time-flexible timeline cally controllableif there exists a viable execution strategy
represents a set of timelines, all sharing the same sequences sych thatS,1{< =} = Spa{< 2} = Spi(z) = Spa(x)
of values. It is worth noting that not all the timelines in for each controllable timepointand projectiongl andp?2.
this set are valid (satisfies a-b-c). The procesgimoe-
line extractionfrom a time-flexible timeline is the process
of computing (if exists) a valid and completely specified
timeline from a given time-flexible timeline. In timeline-
based planning, planning domainis defined as a set of
state variable§SVy,...,SV, } that cannot be considered
as reciprocally decoupled. Then,d@amain theoryis de-
fined as a set of additional relations, calleghchroniza-

Timed Game Automata

Timed game automata (TGA) model have been introduced
in (Maler, Pnueli, and Sifakis 1995) to model control prob-
lems on timed systems. Here, we first present Timed Au-
tomata (TA) (Alur and Dill 1994) and then extend them to
TGA.

tions, that model the existing temporal constraints among
state variables. A synchronization has the f¢th, v) —
({TLy,... . TL AL, vz}, R) wheret TL s the
reference timeliney is a value or/” £ which makes the syn-
chronization applicablef7 £}, ..., 7L, } is a set of target
timelines on which some valueg must hold; andR is a
set ofrelationswhich bind temporal occurrence of thef-
erencevaluev with temporal occurrences of thargetval-
uesvi, ..., vz A planis defined as a set of timelines

{TLy,...,TL,} overthe same interval for each state vari-
able. A plan isvalid with respect to a domain theory if every

Basic Definitions

A fundamental concept in Timed Automata is time. Here,
we give the formal definition of clocks and relations that can
be defined over them, i.e., how it is possible to model time
passing and introduce temporal constraints into automata
definition that follows. Formally, we caltlock a nonneg-
ative, real-valued variable. LeY be a finite set of clocks.
We denote withC'(X) the set of constraint® generated by
the grammar® =z ~c |z —y ~ ¢ | ® A ®, where

c € Z,z,y € X, and~€ {<,<,>,>}. We denote by
B(X) the subset o’ (X) that uses only the form ~ c.

Definition 1 A Timed Automaton (TA) (Alur and Dill
1994) is a tupled = (Q, qo,Act, X, Inv, E), where: Q is

a finite set (oflocationg, ¢o € @ is theinitial location
Act is a finite set (ofactiong, X is a finite set of clocks,
Inv: @ — B(X) is a function associating to each location
g € @ arectangular constraininv(q) (theinvariantof ¢), £

C Q x B(X) x Act x 2% x @Q is afinite set (otransitions.

In the following, we writeq %" ¢ € E for (¢, g, a, Y, ¢')
SN

A valuationof the variables inX is a mapping from X
to the setk~(of nonnegative reals. We denote W@O the

set of valuations otk and with0 the valuation that assigns
the value) to each clock. I C X we denote withy[Y] the
valuation (onX) assigning the value @(z)) to anyz € Y
(z € (X —Y)). Foranys € R=° we denote with + §)
the valuation such that, for eache X, (v+4§)(z) =v(x) +
J. Letg € C(X) andv be a valuation. We say thatsatis-
fiesv, notationv = g¢ if constraintg evaluated on returns
true. This basic model of TA can be extended to allow lo-
cation variables with finite values in guards, invariantg] a
assignments.

A stateof TA A = (Q, qo, Act, X, Inv, E) is a pair(q, v)
s.t. ¢ € Q andw is a valuation (onX). We denote withS
the set of states ofl. An admissiblestate for a4 is a state

(¢,v) s.t.v = Inv(q).
A discrete transitionfor A is 5-tuple (¢,v) % (¢',v")
where (q,v) € S, (¢,v") € S, a € Act and there ex-

ists a transitiony “% ¢/ € Est. v = g, v/ = v[Y] and

v" E Inv(¢’). In other words, there is a discrete transition
(labeled witha) from state(q, v) to state(q’, v’) if the clock
values (valuatiorv) satisfy thetransition guardg and the
clock values after resetting the clocks ¥n (valuationv’)
satisfy the invariant of location’. Note that an admissible

product of the locations of the automata that is@ =
Q1 X ...Q,. Theinitial state ¢" of P is ¢° = (¢?, ... ¢Y).
Theinvariant Inv for P is Inv(q1,...qn) = Invi(g1) A ...
Inv,,(¢,). Thetransition relationE for P is the synchronous
parallel of those of the automata jA. That is, £ consists
of the set of 5-tuplesy(g, a, Y, ¢’) satisfying the following
conditions: 1.¢ = (q1, ---), ¢ = (¢}, --- q,,); 2. There
are; < j € {1,...n} such that for allh € {1,...n}, if
h # i,j theng, = ¢qj,. Furthermore, ifi = j then actioru
occurs only in automatod; of F. 3. Both automatal; and

A; can make a transition with actien That is,g; “%"" ¢/

LaY;
€B,q "5)€ Ejg=g:Ng; Y =YiUY;.

Definition 2 A Timed Game Automaton (TGA) is a TA
A = (Q, qo,Act, X, Inv, E) where the set of actiomct is
splitin two disjoint setsAct,. the set ofcontrollableactions
andAct, the set ofuncontrollableactions.

The notions of network of TA, run and symbolic configura-
tion are defined in a similar way for TGA.

Given a TGA A and three symbolic configurationsit,
Safe andGoal, the reachability control problenor reach-
ability gameRG (A, Init, Safe Goal) consists in finding a
strategyf such thatA4 starting frominit and supervised by
f generates a winning run that staysSafeand enforces
Goal A finite or infinite runp in Runs(4,Init) is winning
if either there is some statg,v) € p such that(l,v) =
Goal and for all state(l’,v") € p (I’,v') |= Safe The set
of winning runs inA from Init is denotedVinRuns(Init.A).

A strategy is a partial mapping from the set of runs ofd
starting frominit to the set Actu{\} (\ is a special symbol
that denotes "do nothing and just wait”). For a finite myn
the strategyf (p) may say (1) no way to win if (p) is unde-
fined, (2) do nothing, just wait in the last configuratioif
f(p) = A, or (3) execute the discrete, controllable transition

transition always leads to an admissible state and that only labeled byl in the last configuration op if f(p) = 1. A

clocks inY (reset clocks) change their value (namely, to 0).

A time transitionfor A is 4-tuple(q, v) LA (q,v") where
(q,v) € S, (q,v") € 8,0 € R>p, vV =v+,v = Inv(q)
andv’ |= Inv(q). Thatis, in a time transition a TA does not
change location, but only its clock values. Note that altklo
variables are incremented by the same amaéumtaluation
v’. This is why variables inX are namedlocks Accord-
ingly, § models theelapsed timeluring the time transition.

A run of a TA A is a finite or infinite sequence of al-
ternating time and discrete transitions df We denote
with Rung A, (¢, v)) the set of runs ofd starting from state

(¢,v) and write RunéA) for RungA, (¢,0)). If pis a fi-
nite run we denote with lagt) the last state of rup and
with Duration(p) the sum of the elapsed times of all time
transitions inp.

A network of TA (nTA) is a finite set of TA evolving in
parallel with a CSS style semantics for parallelism. For-
mally, let 7 = {A4; | « = 1,...n} be a finite set of au-
tomata withA; = (Q;, ¢?, Act, X, Inv;, E;) fori = 1,...n.
Note that the automata i have all the same set of actions
and clocks and disjoint sets of locations. Tregworkof F
(notation||F) is the TAP = (Q, ¢°, Act, X, Inv, E) defined
as follows. The set of location®@ of P is the Cartesian

strategyf is state-base@r memory-lessvhenever its result
depends only on the last configuration of the run.

Definition 3 Given the TGAA = (@, qo, Act, X, Inv, E), a
strategy f over A is a partial function fromRuns(A) to
Act. U {\} s.t. for every finite rurp, if f(p) € Act. then

last(p) 1) (I',v") for some(l’, v").

The restricted behavior of a TGA4 controlled with
some strategyf is defined by the notion obutcome(de
Alfaro, Henzinger, and Majumdar 2001). The outcome
Outcome(q, f) is defined as the subset Bluns(I1,.A) that
can be generated frogrexecuting the uncontrollable actions
in Act,, or the controllable actions provided by the strategy

I

Focusing on reachability gamesyeximal runp is either
an infinite run or a finite run that satisfies eithekdyt(p) =
Goal or ii) if p % thena € Act, (i.e. the only possible
next discrete actions frotast(p), if any, are uncontrollable
actions).

A strategyf is awinning strategyfrom q if all maximal
runs inOutcome(q, f) are inWinRuns(q,.A). A state g
in a TGA A is winningif there exists a winning strategy
fromgin A.

UPPAAL-TIGA

This tool (Behrmann et al. 2007) extends UPPAAL (Larsen,
Pettersson, and Yi 1997) providing a toolbox for the speci-
fication, simulation, and verification of real-time games. |
there is no winning strategy, UPPAAL-TIGA gives a counter
strategy for the opponent (environment) to make the con-
troller lose.

To model concurrent systems, timed automata can be ex-
tended with parallel composition. In the UPPAAL-TIGA
modeling language (Larsen, Pettersson, and Yi 1997), the
CCS parallel composition operator is used, which allows in-
terleaving of actions as well as hand-shake synchronizatio
To model hand-shake synchronization, the action alphabet
is assumed to consist of symbols for input action denoted
asa?, output actions denoted, and internal actions repre-
sented by the distinct symbel

Given a nTGAN 4, a set of goal statesv{n) and/or a set
of bad stated@se), both defined by UPPAAL state formulas,
four types of winning conditions can be issued (Behrmann
et al. 2007). For all of them, the solution of the game is
a controllable strategy such that\/4 supervised byf en-
sures that:AQ win (must reach win);A[not(lose) U win]
(must reach win and must avoid losel); not(lose) W win|
(should reach win and must avoid losd);] not(lose) (must
avoid lose).

Building TGA from Timeline-based Planning
Specifications

The main contribution of this work is in showing how flex-
ible timeline-based plan verification can be performed-solv
ing a TGA Reachability Game. To this end, this section de-
scribes how we encode a flexible timeline-based plan and
the related domain theory into a suitable nTGA. While, the
next section presents the Reachability Game definition and
how UPPAAL-TIGA can be exploited to solve it.

Concerning the encoding, we first define a TGA for each
planned flexible timeline. Then, for each state variablg
we define a correspondent TGA, while Domain Theory is
encoded by means of an Observer automaton. This also

checks that plan and state variables assume consistent val-

ues over all the planning horizdd. In general, state vari-
ables can present both controllable and uncontrollable val
ues. Here, we choose to partition state variables in control
lable and uncontrollable, simplifying the formalizatidsut,

it is worth noting that we are able to handle the general case
as well.

Flexible Plan Encoding

Given a flexible plarP = {7 L4,...,7L,}, we define a
TGA for each7 L;. We consider a unique overallan clock

— for each i-th plan step in the flexible plan, we agdn
Q7; In addition, a last locatiord,,,; is considered in
TL:
= qoislo;
— for each allowed value in SV, we consider an output

actiona,!; if the related state variable is controllable (un-
controllable) we add,, in Act.7» (Act,7r);

— we consider the one cloek in X7.;

— for each i-th plan step and related flexible interval time
point[ib, ub], we consider Iny £ (I;) := ¢, < ub;

— for each i-th plan step and related planned valyend
flexible interval time poin{lb, ub], we consider a transi-

tione = q g,a_,)Y q/ in Erp, Whereq =1, q’ = li+1,
g=cp,>1b,a=0,Y =0

— given the plan lengthi, we consider a last transitian=

¢ “%" ¢ in Brz, whereq = L, ¢ 0,
a=0,Y =0;

The set of automat®lan = { Az, , ..., A7z, } constitutes
a nTGA that represents the planned timelines description.

= lgoaln g =

State Variables Encoding

For each state variableSV V,7T,D),
define a Timed Game AutomatonAgy
(Qsv,qo.Actsy, Xsv,Invsy, Esy) as follows:

we

— for each allowed value in V, we add a location, in
Qsv;
— qo is chosen amon@ sy elements according to the initial

value of the planned flexible timeline on the same state
variableSV;

— for each allowed valuein V, we consider an input action
a,?; if the state variable is controllable (uncontrollable)
we adda, in Act.sy (Act,sv);

— we consider one automata clogk, in Xgy;

— for each allowed value in V andD(v) = [ly, up), we de-
fine Invsy (v) = csp < up;

for each allowed valuey in V, the set of 7 (v) =
{vsi, ..., vs, } and the duration constraifit(v) = [ly,, up),

. .. Y
for each valuevs; we define a transitioa = ¢ “%" ¢/,
Whereq = lvv q/ = lvsi in Fgy, g=csy > Zba a = aq’?v
Y = {CSV}-

The set of automatdV = {Agy;, ..., Asv, } constitutes a
NTGA that represents the State Variables description. Note
that the use of input and output actions implements the syn-
chronization between state variables and planned tineline
Thatis, onced s, fires a transition labeled with, !, the re-

¢,. Each automaton has the same number of states as thelated.Asy, must fire a correspondent transition labele@

length of the timeline: for each activation available in the
plan we introduce a state while a firgal state represents
plan completion.

For each planned flexible timeline7 L,
define a Timed Game Automaton Az,
(Q1e,q0ACtr o, X7r,InVT L, ET) s follows:

we

(Azg, rulesAgy,).

Observer Encoding

A last TGA constitutes a@bserverautomaton that is to su-
pervise the validity of synchronizations and values aver
andPlan.

We define a TGA Aobs
(Qows, q0,ACtobs, Xobvs:INVors, Eops) as follows:

— Qobs = {lok, lerr };

= qoislok;

— we consider a unique uncontrollable actiary,;,
Actops =ACt,ops = {atqir};

— we consider the same plan clo&lo,s = {cp};

— Invpys is not defined;

— for each state planned timelifeL and the related vari-
able SV, plan steps, and related planned valug, we

g,l,r

consider an uncontrollable transitien= ¢ "= ¢’ in
EObsu Whereq = lokn q/ = lerra g = PTSP A _‘SV’UP!
= Afail, T = 0;

— for each synchronization
{TLy,...,TL v, ..., v}, R)
an uncontrollable transition= ¢ ““" ¢’ in Eoy. where
q = loka q/ = lerrv g = _‘R(T['U7TL11,17 .. ~7TL/nv’);
a = Qfail, Y = @

The nTGAPL composed by the set of automaltd, =

SV UPlanU{Aoss} encapsulates Flexible plan, State Vari-
ables and Domain Theory descriptions.

—

consider

(TL,v)
we

Verifying Time Flexible Plans
Given the nTGAPL obtained following the encoding pro-

timelines and state variables) and synchronizationsfaatis
tion. Value consistency is trivial. Again, by construction
the Observer holds into the error location when a transition
guard is activated, that is, when the related flexible beairavi
violates the associated synchronization. On the other,hand
when a flexible behavior violates a synchronization, the re-
lated guard is activated, hence enforcing the error lonatio
for the Observer.

At this point we have that, if there exists a win-
ning strategyf for RG(PL, Init,Safe, Goal), then the
Outcome(Init, f) represents the subset Buns(PL) C
WinRun¢Init, /) that guarantees that (foal states are
reached and (iipafe states are enforced. This means that
eachp € Outcome(Init, f) reaches all the locations in
{l]lislgoar € Qrr, YTL; € Plan} while the observer
holds/,;. From this, it is straightforward that for each time-
line 7 L;, all the transitions can be performed maintaining
allowed values (w.r.t. state variable definition) and witho
violating any synchronization. Thus, the plan is valid.

To search for winning strategies f&tG(PL, Init, Safe
Goal) (and then to verify the plan), we exploit UPPAAL-
TIGA. This can be done by checking the following for-
mula: & = A [Safe U Goal] This formula states that,
for each possible evolution of uncontrollable state vdesb
goals must be reached while errors must be avoided. If ver-
ified, UPPAAL-TIGA returns a control execution strategy
that guarantees (if correctly "executed”) to reach plagnin
goals for all possible temporal world evolutions. Thusjver

cess presented above, we can define a Reachability Gamefying the above property implies validating the flexible tem

that ensures, if successfully solved, plan validity.

Theorem 1 Given aRG(PL, Init, Safe Goal) defined con-
sideringInit = {q | ¢ is 0 € Q7r, VTL; € Plan} U
{algisqo € Qsy, VSVi € SV} U{q|qis q € Qobs},
Safe= {l,,} andGoal= {l | l is ljou1 € Q7r, VTL; €
Plan}, solving/winning the game implies plan validity for
TL.

Proof Sketch. The proof is composed of two parts. First,
we show that the nTGAP L describes all and only the be-
haviors defined by the flexible plgh = {T £,,...,7 L, }.
Then, we prove that solving thRG(PL, Init, Safe Goal)
corresponds to verify the plan.

The set of automat®lan = {Arz,,..., Arc, } repre-
sents all the possible planned temporal behaviors over all
the timelines. In fact, each automately -, describes the
planned temporal sequence of values for Th&; timeline
within the planning horizorf{. While, automata inSV
= {Agv,, ..., Asy, } represent exactly the given state vari-
ables description. We recall that the use of input/output ac
tions implements straightforward relations between atidw
values and planned values for each timeline. By construc-
tion, we have a one-to-one mapping between flexible plan
behaviors and automata behaviors: for each behavilain
U SV, we have a behavior i® and vice versa (any possible
behavior inPlan U SVbut not in a flexible plan would vio-
late temporal timepoint plan constraints, any possibld-flex
ble plan behavior ifP but not inPlanu SVwould violate au-
tomata guards or invariants). Finally, the Observer automa

poral plan.

In addition to this, we can ask UPPAAL-TIGA to ver-
ify additional properties like, for instance, undesiredtss
avoidance. In fact,Safe configuration can be enriched
with additional statements. That iSafe= {l,x} U
{—stateyndesirea}- Then, the computed strategy ensures
not only to reach goals but also to maintain safe state and
to avoid undesired states.

Moreover, another important issue can be addressed ex-
ploiting our verification approach: plan controllability.

Recalling thedynamic controllabilitydefinition for time-
lines, we notice that: 1) each possible evolution of uncon-
trollable timeline/automaton i? £ corresponds to a projec-
tion p; 2) each strategy/solution for tHeéG corresponds to a
scheduléel™; 3) a set of winning strategies represents a viable
execution strategy.

Thus, UPPAAL-TIGA verifies® (i.e., checks how to
win the RG) producing a viable execution strategy. Since
UPPAAL-TIGA verification process operates on the basis
of forward algorithms (Behrmann et al. 2007), the produced
execution strategy is such thatS,1 {< z} = Spa{< z} =
Sp1(x) = Spa2(z) for each controllable timepoint and pro-
jectionspl andp2. As a consequence, we obtain the follow-
ing Corollary.

Corollary 1 Given RG(PL, Init, Safe Goa) defined as
above and using UPPAAL-TIGA to find a winning execution
strategyS. If UPPAAL-TIGA solvesRG then the flexible

ton checks for both values consistency (between planned plan is dynamically controllable by meansf

We shall notice that our approach to dynamic controlla- Orbit Events
bility checking relies on the fact that the verification tool Timeline
works with forward algorithms; otherwise, nothing can be EquLs o
said about dynamic controllability. ‘ ‘
Maint Comm LSC L |

DURING

Remote Space
Agent Timeline

pS—
-]
it

Case Study and Preliminary Experiments

In this section, we present the application of our method in
a specific case study. In our recent work we have considered)
variants of a real application case studies (Cesta et aB;200 G:’“'!:’ lf.tl?ttm"
2009b). The same experience has been used here to derive a il
general planning problem. Basically, a remote space agent i

to be controlled in order to accomplish some required tasks
(science, communication and maintenance activitieskslas
have to be temporally synchronized with exogenous events
that occur independently from agent control.

DURING
@
®
2

Unavailable

>
—p
time

Figure 2:Timeline synchronizations in a plan.

/ \ must occur in the same time interval as Apocentres and com-
/\ munications must occur during ground station visibilitywvi
/ \ dows. In addition to those synchronization constraints, th
operative mode timeline must respect transition condsain
,\ o001 among values and durations for each value specified by the

e / domain (see again Fig. 2).
‘ \ [60,+INF] / (g g)

g Using UPPAAL-TIGA
\ vt / We now show how planning domains can be encoded in
the specification language of UPPAAL-TIGA. This requires
defining a suitable set of automata and clocks. Automata are
associated with multi-valued state variables while clamles
necessary to represent time progress.

We represent the domain problem with two different types For each state variable (and hence for each timeline) we

Figure 1:Value transitions for the a main state variable describing
the Remote Space Agent temporal behavior.

of state variablesControllable State Variablesvhich de- have astate variable timed automatonhose modes cor-
fine the search space of the problem, and whose timelines respond to possible state variable values, while tramsitio
ultimately represent the solution to the problddmcontrol- represent changes of values. State variable definition in-

lable State Variablegepresenting values imposed over time ~ cludes temporal constraints specified by means of: value
which can only be observed. Modeling the agent activities, durations constraints (in terms pfiin, max]); sequencing
we use a single controllable state variable which specifies constraints between values expressed through Allen’s tem-
the temporal occurrence of science and maintenance oper-poral relations.
ations as well as the agent’s ability to communicate. The Durations constraints (e.g., Science activity duration in
values that can be taken by this state variable, their dura- [2160, 4080]) are encoded as both clock mode invariants and
tions and the allowed transitions among them, are detailed guards on the related outgoing transitions. While sequenc-
in Figure 1. ing constraints (e.g., ScienoeeetsSlew) are encoded defin-

In addition, we instantiate two uncontrollable state vari- ing appropriate outgoing transitions.
ables to represent contingent events such as orbit events In Figure 3 we report the complete UPPAAL-TIGA mod-
and communication opportunity windows. One state vari- ule declaration for the agent state variable.
able maintains the temporal occurrences of pericentres and Plan verification requires an input model that encodes also
apocentres. We are supposing the remote agent is opera-the generated plan. Since a generated plan provides a set
tive around a target planet. Pericentre is the orbital glbse of value activations (associated with time points) (plahne
to the target planet while apocentre is the orbital far away timeline) for each state variable, a plan describes the se-
from the planet. (“PERI” and "APO” values on the time- quence of values the state variables are to assume in a given
line in Figure 2, top) of the agent’s orbit (they are fixed in time frame. To represent flexible plans, we consider an ad-

time), while the other state variable maintains the vigipil ditional generaplan clockand we introduce an automaton

of ground stations (Ground Station Availability timeline i for each planned behavior. This automaton has a number
Figure 2, bottom). This state variable has as allowed values of modes that equals the length of the plan: for each acti-
{Available, Unavailablé. vation/decision available in the plan we introduce a mode

Any valid plan needs synchronizations among the agent while a finalgoal mode represents plan completion. An in-
timeline (Figure 2, middle) and the uncontrollable timebn variant is considered to model maximum staying duration.
(represented as dotted arrows in Figure 2): science opera- Transitions between modes represent plan steps, froraliniti
tions must occur during Pericentres, maintenance opesatio value to the last one. For each transition, we introduce a

process REMOTE_AGT() {
state
Earth, Earth_Conm
Sci ence {cl ockREMOTE_AGT <= 4080},
Mai nt enance {cl ockREMOTE_AGT <= 5400},
Sl ew {cl ockREMOTE_AGT <= 1800} ;
init Earth;
trans
Earth -> Slew { guard cl ockREMOTE_AGT >= 1;
sync pul se_Slew?; },
Earth -> Mintenance { guard cl ockREMOTE_AGT >= 1;
sync pul se_Mi nt enance?;
assign cl ockREMOTE_AGT : =
cl ockREMOTE_AGT >= 1;
sync pul se_Eart h_Com®;
assign cl ockREMOTE_AGT : =
cl ockREMOTE_AGT >= 3600;
sync pul se_Earth?;
assign cl ockREMOTE_AGT : =
guard cl ockREMOTE_AGT >=
sync pul se_Mai nt enance?;
assign cl ockREMOTE_AGT : =
-> Slew { guard cl ockREMOTE_AGT >= 3600;
sync pul se_Sl ew?;
assign cl ockREMOTE_AGT : =
Science -> Slew { guard cl ockREMOTE_AGT >= 2160;
sync pul se_Sl ew?;
assign cl ockREMOTE_AGT : =
Mai nt enance -> Earth { guard cl ockREMOTE_AGT >= 5400;
sync pul se_Earth?;
assign cl ockREMOTE_AGT : =
Mai nt enance -> Earth_Conm { guard cl ockREMOTE_AGT >=
sync pul se_Eart h_Com®;
assign cl ockREMOTE_AGT : =
Slew -> Earth { guard cl ockREMOTE_AGT >= 1800;
sync pul se_Earth?;
assign cl ockREMOTE_AGT : =
Slew -> Earth_Conm { guard cl ockREMOTE_AGT >= 1800;
sync pul se_Earth_Comm?®;
assign cl ockREMOTE_AGT : =
Sl ew -> Science { guard cl ockREMOTE_AGT >= 1800;
sync pul se_Sci ence?;
assign cl ockREMOTE_AGT : =

0},
Earth -> Earth_Comm { guard

0},

Earth_Comm -> Earth { guard

Eart h_Comm - > Mai nt enance { 3600;

0;},
Ear t h_Comm

0},

0},

5400;

0},
0},
0},

0;};

Figure 3: Module definition for the Remote Space Agent. Note
that the clock is checked on seconds.

guard that enables transition at the minimum staying dura-
tion.

In order to consider both controllable and uncontrollable
state variables, we introduce uncontrollable TGA traosgi
for uncontrollable components.

In Figure 4, two encodeglan automataare depicted:

a) a flexible plan for the remote agent that is to be verified;
b) a behavior of the ground station availability state vari-
able. Note that synchronization channels are exploited to
relate planned values to state variables automaton. For in-
stance, the second transition in Figure 4a synchronizés wit
related transition defined in Figure 3 between Slew and Sci-
ence modes.

In addition, we introduce another automaton: thie
server automatonlt is to check the consistency of temporal
constraints defined both on and among different timelines,
i.e., to check sequencing and synchronizations consstaint
Synchronization constraints among different timelines ar
expressed in terms of general temporal relations on values.

Given the above input model, we ask UPPAAL-TIGA to
verify the following formula: control: A [not monitor.ERR
U plan.Goal] This formula means that for each possible
evolution of uncontrollable components, the goal must be
reached while monitor errors must be avoided. If verified,
UPPAAL-TIGA returns a control execution strategy that, if
respected, guarantees to reach planning goal in all pessibl

clockPlan >= 12439 clockPlan >= 14239

pulse_Slew! pulse_Science!
State0 stepREMOTE_AGT++ Statel stepREMOTE_AGT++ StateZ
a Y =)
) © U o

clockPlan <= 12459 clockPlan <= 14259 clockPlan <= 16419

clockPlan == 27300 clockPlan >= 39300
b) State0 pulse_Available! pulse_Unavailable!
) @ stepDSS_STATIONS++ S1afe! gtenpSs sTATIONS++ State2

clockPlan <= 27300 clockPlan <= 39300 clockPlan <= 50400

Figure 4: TIGA models for timelines: a) controllable state vari-
able; b) uncontrollable state variable.

process nonitor() {
state OK, ERR;
init oK
trans
K -u-> ERR { guard (stepREMOTE_AGT == 0)
and not (REMOTE_AGTEarth); 1},
guard (stepREMOTE_AGT == 1)
and not (REMOTE_AGTSlew); 1},

OK -u-> ERR {

K -u-> ERR { guard ((REMOTE_AGTEart h_Conmm)

and not (STATIONSAvailable)); 1},
guard ((REMOTE_AGTMai nt enance)

and not (ORBI T_EVENTSApocentre)); 1},
guard ((REMOTE_AGTSci ence)

and not (ORBIT_EVENTSPericentre)); 1},

K -u-> ERR {

K -u-> ERR {

ERR -u-> ERR { };

Figure 5:Partial monitor module definition. Note that Monitor is
uncontrollable.

world evolutions. Thus, verifying the above property im-
plies validating the flexible temporal plan.

Since the input model incorporates all domain tempo-
ral constraints, the UPPAAL-TIGA verification algorithms
guarantee that all time points in the strategy only depend on
occurrences of past events. Such a feature constitutes the
condition of dynamic controllability for a flexible tempadra
plan. So, verifying the formula not only guarantees plan va-
lidity but it also ensures dynamic controllability.

Empirical Results

In order to show the feasibility of our approach, we present
experimental results on preliminary tests focusing on the
analysis of the dependency of plan verification performance
from the degree dilexibility.

We generate a flexible plan by introducing flexibility into
a completely instantiated plan. This is done by replacing a
time pointt = 7 in the instantiated plan with a time interval
t € [t — A, 7+ Al in the flexible plan. The main param-
eters we consider are: the numideof time points that are
replaced with time intervals and the widttiufation) A of
such intervals.

We perform two kind of experiments. First, keepifg
constant A = 10), we study how plan verification time de-
pends on the plan size (i.e., the number of plan time points)
and on the number of flexible time poinds Second, keep-
ing constant the plan size (to 35 time points), we study how
plan verification time depends on the number of flexible time

points® and on the duratior.

We run our experiments on a Linux workstation endowed
with a 64-bit AMD Athlon CPU (3.5GHz) and 2GB RAM.
Given® and A, an experiment consists in choosing at ran-
dom @ plan time points, replacing such chosen time points
with time intervals of duratiom\, running the UPPAAL-
TIGA verifier and, finally, measuring the verification time.

ered the relevant problem of dynamic controllability check
ing.

Notice that, since we use a general purpose model-
checker, verification is PSPACE complete. However, this
is only a theoretical result and UPPAAL-TIGA algorithm
yields very encouraging performance results in practice
(Cassez et al. 2005). In fact, the results presented heve sho

For each configuration we repeat our experiment 5 times and that UPPAAL-TIGA allows effective verification of flexible

compute the mean value (in msecs.) and variatiee) for
the verification time.

We note that not all experiments relative to given values
for ® andA yield a satisfiable flexible temporal plan. In fact,
since the plan is only flexible at certain time points, the de-
grees of freedom may not suffice to recover from previously
delayed (or anticipated) actions. Of course this is pafticu
larly the case whe® is small with respect to the plan size.
Accordingly, our verification times refer to passing (iteg
given flexible temporal plan is dynamically controllables) a
well as failing (i.e., the given flexible temporal plan is not
dynamically controllable) experiments.

Table 1 shows our results for the first kind of experiments.
From this figure we see that the verification tool has homo-
geneous performances over all the configurations.

Table 2 shows our results for the second kind of exper-
iments. From this figure we see that the verification tool
handles well flexible plan with higher and higher degrees of
flexibility both in terms of® andA.

Table 1: Experimental results collected varying plan langt
and the number of flexible time points(Timings in msecs.)

plan size 10 20 35
D
3 35.6+0.8 36.6+1.7 37.4+0.5
6 35.2+0.4 3640 37.4+0.5
9 36+1.8 36.2+0.4 39.2+1.9
12 34.8+0.4 36.4+0.5 37.8+£0.4
15 3540 36.2+0.4 | 43.6+10.2
18 3540 40 +8 3940

Table 2. Experimental results collected with a fixed plan
length (Timing in msecs.).

A

1 5 10 15 20
D
3 40+6 37.4+0.5 37.8+0.4 51+7.8 37.8+1
6 38.4+0.5 38.6+1.2 38+0 44 .4+8.5 38.2+0.4
9 38.4+0.5 38+0 39.2+1.9 3940 38.8+0.4
12 52.4+10.3 38.8+0.4 38.4+0.5 39+0 39.4+0.5
15 39.2+0.4 52+13 39.2+0.4 39.2+0.4 39.8+0.4
18 39.6+0.5 39.6+0.8 40.4£1.5 48.8+9.1 40+0.6
Conclusion

This paper introduces a method to represent and verify flex-
ible plans using TGA and UPPAAL-TIGA. In particular, it
describes the verification method, detailing the formateep
sentation and the modeling methodology. To show the feasi-
bility and the effectiveness of the approach we have consid-

temporal plan by directly using the implicit representatio
of the state variable models. Therefore, model-checking in
UPPAAL-TIGA on the one hand provides a useful indepen-
dent verification tool for flexible timelines, on the othenka
permits plan verification of the flexible plans produced by
a black-box planner avoiding to rebuild associated STPU.
Moreover, it produces results that can be further exploited
as follows. First, from a valid flexible plan we can extract
a strategy that can be used to safely execute the given plan.
Second, an invalid plan can be analyzed and information can
be obtained by the tool, helping users to identify weakness
causes and provide useful hints on how to obtain a valid plan.

Acknowledgments. Cesta, Fratini, Orlandini and Tronci
are partially supported by the EU project ULISSE (Call
“SPA.2007.2.1.01 Space Science”. Contract FP7.218815).
Cesta and Fratini are also partially supported by European
Space Agency (ESA) within the Advanced Planning and
Scheduling Initiative (APSI). Aspects from this paper are
synthetically presented in (Cesta et al. 2009a).

References
Abdedaim, Y.; Asarin, E.; Gallien, M.; Ingrand, F.; Lesire,
C.; and Sighireanu, M. 2007. Planning Robust Tem-
poral Plans: A Comparison Between CBTP and TGA
Approaches. InICAPS-07. Proceedings of the Seven-
teenth International Conference on Automated Planning
and Scheduling2—10.

Alur, R., and Dill, D. L. 1994. A theory of timed automata.
Theoretical Computer Sciend26:183-235.

Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.;
Larsen, K. G.; and Lime, D. 2007. RPAAL-TIGA: Time
for playing games! IrProc. of CAV-07 number 4590 in
LNCS, 121-125. Springer.

Bresina, J.; Jonsson, A.; Morris, P.; and Rajan, K.
2004. Mixed-initiative constraint-based activity plangi
for mars exploration rovers. IIWPSS-04. Proceedings of
4th International Workshop on Planning and Scheduling
for Space

Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime,
D. 2005. Efficient on-the-fly algorithms for the analysis of
timed games. l€ONCUR 200566—80. Springer-Verlag.
Cesta, A., and Fratini, S. 2008. The Timeline Represen-
tation Framework as a Planning and Scheduling Software
Development Environment. IRlanSIG-08. Proceedings
of the 27" Workshop of the UK Planning and Scheduling
Special Interest Group, Edinburgh, UK, December 11-12
Cesta, A.; Fratini, S.; Oddi, A.; and Pecora, F. 2008.
APSI Case#l: Pre-planning Science Operations KR

EXPRESS In i-SAIRAS-08. Proceedings of thé&*dnt.
Symp. on Atrtificial Intelligence, Robotics and Automation
in Space JPL, Pasadena, CA.

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci
E. 2009a. Flexible Timeline-Based Plan Verification. In
KI 2009, volume 5803 of.NAI.

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci
E. 2009b. Validation and Verification Issues in a Timeline-
Based Planning SystenKnowledge Engineering Review
(To appear)

de Alfaro, L.; Henzinger, T.; and Majumdar, R. 2001.
Symbolic Algorithms for Infinite-state Games. Pmoceed-
ings of the 12th International Conference on Concurrency
Theory pp. 536-550. Lecture Notes in Computer Science
2154, Springer-Verlag.

Frank, J., and Jonsson, A. 2003. Constraint Based Attribute
and Interval Planning.Journal of Constraints$3(4):339—
364.

Howey, R., and Long, D. 2003. VAL's Progress: The
Automatic Validation Tool for PDDL2.1 Used in the In-
ternational Planning Competition. Froceedings of the
ICAPS Workshop on The Competition: Impact, Organiza-
tion, Evaluation, Benchmark28-37.

Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in Interplanetary Space: The-
ory and Practice. IRIPS-00. Proceedings of the Fifth Int.
Conf. on Atrtificial Intelligence Planning and Scheduling
177-186.

Khatib, L.; Muscettola, N.; and Havelund, K. 2001. Map-
ping Temporal Planning Constraints into Timed Automata.
In TIME-O1. The Eigth Int. Symposium on Temporal Rep-
resentation and Reasoningl-27.

Larsen, K. G.; Pettersson, P.; and Yi, W. 1997. UPPAAL
in a Nutshell. International Journal on Software Tools for
Technology Transfet(1-2):134-152.

Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the Synthe-
sis of Discrete Controllers for Timed Systems. SMACS
LNCS, 229-242. Springer.

Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. InProc. of AAAI 20051193—
1198.

Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
Control of Plans With Temporal Uncertainty. Rroc. of
IJCAI 2001, 494-502.

Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., datelligent
SchedulingMorgan Kauffmann.

Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the
Gap Between Planning and Schedulitnowledge Engi-
neering Reviewt5(1):47-83.

Vidal, T., and Fargier, H. 1999. Handling Contingency
in Temporal Constraint Networks: From Consistency To
Controllabilities. JETAI11(1):23-45.

Vidal, T. 2000. Controllability Characterization and
Checking in Contingent Temporal Constraint Networks. In
Proceedings of KR-Q0

