
Verifying Flexible Timeline-Based Plans

A. Cesta† and A. Finzi‡ and S. Fratini† and A. Orlandini ∗ and E. Tronci§
† ISTC-CNR, Via S.Martino della Battaglia 44, I-00185 Rome, Italy
‡ DSF “Federico II” University, Via Cinthia, I-80126 Naples, Italy

∗ DIA “Roma TRE” University, Via della Vasca Navale 79, I-00146 Rome,Italy
§ DI “La Sapienza” University, Via Salaria 198, I-00198 Rome, Italy

Abstract

The synthesis of flexible temporal plans has demonstrated
wide applications possibilities in heterogeneous domains. We
are currently studying the connection between plan genera-
tion and execution from the particular perspective of verifying
a flexible plan before actual execution. This paper explores
how a model-checking verification tool, based on UPPAAL-
TIGA, is suitable for verifying flexible temporal plans. We
first describe the formal model, the formalism, and the verifi-
cation method. Furthermore we discuss our own approach
and some preliminary empirical results using a real-world
case study.

Introduction
Timeline-based planning has been shown very effective
for applications in heterogeneous real-world domains –
see (Muscettola 1994; Jonsson et al. 2000; Frank and Jons-
son 2003; Smith, Frank, and Jonsson 2000). A problem for
a wider diffusion of such technology stems in the limited
community that has been studying formal properties of this
planning approach.

We are currently working at investigating the intercon-
nection between timeline-based planning and standard tech-
niques for formal validation and verification. In an initial
work (Cesta et al. 2009b), we have listed several directions
for contamination between the two technologies, then we
have started addressing properties to develop a robust en-
vironment for plan generation and execution. In particular,
among several V&V tasks, (Cesta et al. 2009b) identifies
plan verification as a crucial task and proposes a generic
model checking approach to accomplish such a task.

Here, we propose a formal account of more recent work
focusing on formal verification of flexible temporal plans.
Such a task can be deployed at different levels: namely,
to validate either domain models or the planner, to ver-
ify the plan before execution, etc. The main contribution
of the present paper is in presenting a formalization used
for verification of flexible temporal plans that make use of
Timed Game Automata (Maler, Pnueli, and Sifakis 1995)
and UPPAAL-TIGA (Behrmann et al. 2007), a well known
model-checking tool. Then, the paper describes the verifica-
tion method, presenting the exploited formalism and provid-
ing current results on its usage.

It is worth noting that such an approach allows us to
apply our V&V method on any timeline-based P&S sys-
tem (EUROPA (Frank and Jonsson 2003), IDEA (Jons-
son et al. 2000), APSI-TRF (Cesta and Fratini 2008),
etc.) and even on flexible temporal plans manually gener-
ated/modified (e.g., as done on MERs (Bresina et al. 2004)).
In this sense, our V&V method can be consideredgeneral
while relies on aindependentchecker (with respect to plan-
ners’ logic/reasoning/tool).

Moreover, to show the feasibility and effectiveness of
the approach we illustrate how thecontrollability problem
(Vidal and Fargier 1999; Morris, Muscettola, and Vidal
2001) can be encoded and solved by deploying the proposed
methodology. In real domains, thecontrollability problem
arises when a generated temporally flexible plan is to be exe-
cuted by anexecutivesystem that manages controllable pro-
cesses in presence of exogenous events. In this scenario, the
duration of the execution process is not completely under the
control of the executive: the actions that are under the scope
of the executive should be chosen so that they do not con-
strain uncontrollable events. Since (Vidal and Fargier 1999)
the problem of controllability has been addressed through
the temporal network which underlies a temporal plan rep-
resentation, here we show how our general purpose verifica-
tion method can be deployed to solve this relevant problem
in flexible plan verification.

Related works. Closely related to our work is (Abdedaim
et al. 2007), which proposes a mapping from temporal
constraint-based planning problems into UPPAAL-TIGA
game-reachability problems and presents a comparison of
the two planning approaches. Authors main concern was
plan synthesis, while our current goal is flexible plans veri-
fication. The approach to problem modeling is similar, how-
ever, in that work the flexibility issue remains open. Also
(Khatib, Muscettola, and Havelund 2001) propose a map-
ping from interval-based temporal relations models (i.e.,
Domain Description Language models from RAX-PS) to
timed automata models of UPPAAL (Larsen, Pettersson, and
Yi 1997), but again flexible timeline verification was not
addressed. Furthermore, (Vidal 2000) proposes a mapping
from Contingent Temporal Constraint Networks(a general-
ization of STPUs) toTimed Game Automatawhich is anal-
ogous to the one exploited here. In this work, the use of

a model checker is suggested only to obtain a more com-
pact representation and not to verify plan properties. In a
PDDL framework, (Howey and Long 2003) tackle verifica-
tion of temporal plans, however, authors do not address flex-
ible temporal plans, and more expressive temporal features.

Timeline-Based Planning and Execution
Timeline-based planning is an approach to temporal plan-
ning (Muscettola 1994) where the generated plans are repre-
sented by sets of timelines. Each timeline denotes the evo-
lution of a particular feature in a dynamic system. A plan-
ning domain encodes the possible evolutions of the timelines
whose time points have to satisfy temporal constraints, usu-
ally represented as Simple Temporal Problem (STP) restric-
tions.

Here, we assume that the timelines in a planning do-
main are incarnations of multi-valuedstate variablesas in
(Muscettola 1994). A state variable is characterized by a fi-
nite set of values describing its temporal evolutions, and by
minimal and maximal duration for each value. More for-
mally, a state variable is defined by a tuple〈V, T ,D〉 where:
(a)V = {v1, . . . , vn} is a finite set ofvalues; (b) T : V →
2V is the value transitionfunction; (c)D : V → N × N

is thevalue durationfunction, i.e. a function that specifies
the allowed duration of values inV (as an interval[lb, ub]).
Given a state variable, its associatedtimelineis represented
as a sequence of values in the temporal intervalH = [0,H).
Each value satisfies previous (a-b-c) specifications and is de-
fined on a set of not overlapping time intervals contained in
H. We suppose that adjacent intervals present different val-
ues. A timeline is saidcompletely specifiedover the tem-
poral horizonH when a sequence of non-overlapping val-
ued intervals exists and its union is equal toH. A time-
line is saidtime-flexiblewhen is completely specified and
transition events are associated to temporal intervals (lower
and upper bounds are given for them), instead of exact tem-
poral occurrences. In other words, a time-flexible timeline
represents a set of timelines, all sharing the same sequence
of values. It is worth noting that not all the timelines in
this set are valid (satisfies a-b-c). The process oftime-
line extractionfrom a time-flexible timeline is the process
of computing (if exists) a valid and completely specified
timeline from a given time-flexible timeline. In timeline-
based planning, aplanning domainis defined as a set of
state variables{SV1, . . . ,SVn} that cannot be considered
as reciprocally decoupled. Then, adomain theoryis de-
fined as a set of additional relations, calledsynchroniza-
tions, that model the existing temporal constraints among
state variables. A synchronization has the form〈T L, v〉 −→
〈{T L′

1, . . . , T L′
n}, {v

′
1, . . . , v

′
|T L′|},R〉 where: T L is the

reference timeline;v is a value onT L which makes the syn-
chronization applicable;{T L′

1, . . . , T L′
n} is a set of target

timelines on which some valuesv′
j must hold; andR is a

set ofrelationswhich bind temporal occurrence of theref-
erencevaluev with temporal occurrences of thetargetval-
uesv′

1, . . . , v
′
|T L′|. A plan is defined as a set of timelines

{T L1, . . . , T Ln} over the same interval for each state vari-
able. A plan isvalid with respect to a domain theory if every

temporal occurrence of a reference value implies that the re-
lated target values hold on target timelines presenting tem-
poral intervals that satisfy the expected relations. A planis
time flexibleif ∃T Li ∈ {T L1, . . . , T Ln} such thatT Li is
time flexible.

At execution time, an executive cannot completely pre-
dict the behavior of the controlled physical system because
the duration of certain processes or the timing of exogenous
events is outside of its control. In these cases, the values
for the state variables that are under the executive scope
should be chosen so that they do not constrain uncontrol-
lable events. Thiscontrollability problemis defined, e.g. in
(Vidal and Fargier 1999) wherecontingentandexecutable
processes are distinguished. The contingent processes are
not controllable, hence with uncertain durations, insteadthe
executable processes are started and ended by the executive
system. Controllability issues have been formalized and in-
vestigated for the Simple Temporal Problems with Uncer-
tainty (STPU) in (Vidal and Fargier 1999) where basic for-
mal notions are given fordynamiccontrollability (see also
(Morris and Muscettola 2005)). In the timeline-based frame-
work, we introduce the same controllability concept defined
on STNU as follows. Given a plan as a set of flexible time-
linesPL = {T L1, . . . , T Ln}, we callprojectionthe set of
flexible timelinesPL′ = {T L′

1, . . . , T L′
n} derived from

PL setting to a fixed value the temporal occurrence of each
uncontrollable timepoint. ConsideringN as the set of con-
trollable flexible timepoints inPL, a scheduleT is a map-
ping T : N → N whereT (x) is calledtimeof timepointx.
A scheduleis consistentif all value durations and synchro-
nizations are satisfied inPL. Thehistory of a timepointx
w.r.t. a scheduleT , denoted byT{≺ x}, specifies the time
of all uncontrollable timepoints that occur prior tox. An ex-
ecution strategyS is a mappingS : P → T whereP is the
set of projections andT is the set of schedules. An execution
strategyS is viable if S(p) (denoted alsoSp) is consistent
for each projectionp. Thus, a flexible planPL is dynami-
cally controllableif there exists a viable execution strategy
S such thatSp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x)
for each controllable timepointx and projectionsp1 andp2.

Timed Game Automata
Timed game automata (TGA) model have been introduced
in (Maler, Pnueli, and Sifakis 1995) to model control prob-
lems on timed systems. Here, we first present Timed Au-
tomata (TA) (Alur and Dill 1994) and then extend them to
TGA.

Basic Definitions
A fundamental concept in Timed Automata is time. Here,
we give the formal definition of clocks and relations that can
be defined over them, i.e., how it is possible to model time
passing and introduce temporal constraints into automata
definition that follows. Formally, we callclock a nonneg-
ative, real-valued variable. LetX be a finite set of clocks.
We denote withC(X) the set of constraintsΦ generated by
the grammar:Φ ::= x ∼ c | x − y ∼ c | Φ ∧ Φ, where
c ∈ Z, x, y ∈ X, and∼∈ {<,≤,≥, >}. We denote by
B(X) the subset ofC(X) that uses only the formx ∼ c.

Definition 1 A Timed Automaton (TA) (Alur and Dill
1994) is a tupleA = (Q, q0, Act,X, Inv, E), where: Q is
a finite set (of locations), q0 ∈ Q is the initial location,
Act is a finite set (ofactions), X is a finite set of clocks,
Inv : Q → B(X) is a function associating to each location
q ∈ Q a rectangular constraintInv(q) (theinvariantof q), E
⊆ Q×B(X)×Act× 2X ×Q is a finite set (ortransitions).

In the following, we writeq
g,a,Y
→ q′ ∈ E for (q, g, a, Y , q′)

∈ E.
A valuationof the variables inX is a mappingv from X

to the setR≥0 of nonnegative reals. We denote withRX
≥0 the

set of valuations onX and with~0 the valuation that assigns
the value0 to each clock. IfY ⊆ X we denote withv[Y] the
valuation (onX) assigning the value 0 (v(z)) to anyz ∈ Y
(z ∈ (X − Y)). For anyδ ∈ R≥0 we denote with (v + δ)
the valuation such that, for eachx ∈ X, (v + δ)(x) = v(x) +
δ. Let g ∈ C(X) andv be a valuation. We say thatg satis-
fiesv, notationv |= g if constraintg evaluated onv returns
true. This basic model of TA can be extended to allow lo-
cation variables with finite values in guards, invariants, and
assignments.

A stateof TA A = (Q, q0, Act,X, Inv, E) is a pair(q, v)
s.t. q ∈ Q andv is a valuation (onX). We denote withS
the set of states ofA. An admissiblestate for aA is a state
(q, v) s.t.v |= Inv(q).

A discrete transitionfor A is 5-tuple(q, v)
a
→ (q′, v′)

where (q, v) ∈ S, (q′, v′) ∈ S, a ∈ Act and there ex-

ists a transitionq
g,a,Y
→ q′ ∈ E s.t. v |= g, v′ = v[Y] and

v′ |= Inv(q′). In other words, there is a discrete transition
(labeled witha) from state(q, v) to state(q′, v′) if the clock
values (valuationv) satisfy thetransition guardg and the
clock values after resetting the clocks inY (valuationv′)
satisfy the invariant of locationq′. Note that an admissible
transition always leads to an admissible state and that only
clocks inY (reset clocks) change their value (namely, to 0).

A time transitionfor A is 4-tuple(q, v)
δ
→ (q, v′) where

(q, v) ∈ S, (q, v′) ∈ S, δ ∈ R≥0, v′ = v + δ, v |= Inv(q)
andv′ |= Inv(q). That is, in a time transition a TA does not
change location, but only its clock values. Note that all clock
variables are incremented by the same amountδ in valuation
v′. This is why variables inX are namedclocks. Accord-
ingly, δ models theelapsed timeduring the time transition.

A run of a TA A is a finite or infinite sequence of al-
ternating time and discrete transitions ofA. We denote
with Runs(A, (q, v)) the set of runs ofA starting from state
(q, v) and write Runs(A) for Runs(A, (q,~0)). If ρ is a fi-
nite run we denote with last(ρ) the last state of runρ and
with Duration(ρ) the sum of the elapsed times of all time
transitions inρ.

A network of TA (nTA) is a finite set of TA evolving in
parallel with a CSS style semantics for parallelism. For-
mally, let F = {Ai | i = 1, . . . n} be a finite set of au-
tomata withAi = (Qi, q

0
i , Act,X, Invi, Ei) for i = 1, . . . n.

Note that the automata inF have all the same set of actions
and clocks and disjoint sets of locations. Thenetworkof F
(notation||F) is the TAP = (Q, q0, Act,X, Inv, E) defined
as follows. The set of locationsQ of P is the Cartesian

product of the locations of the automata inF , that isQ =
Q1 × . . . Qn. The initial stateq0 of P is q0 = (q0

1 , . . . q0
n).

The invariant Inv for P is Inv(q1, . . . qn) = Inv1(q1) ∧ . . .
Invn(qn). Thetransition relationE forP is the synchronous
parallel of those of the automata inF . That is,E consists
of the set of 5-tuples (q, g, a, Y , q′) satisfying the following
conditions: 1.q = (q1, . . . qn), q′ = (q′1, . . . q′n); 2. There
are i ≤ j ∈ {1, . . . n} such that for allh ∈ {1, . . . n}, if
h 6= i, j thenqh = q′h. Furthermore, ifi = j then actiona
occurs only in automatonAi of F . 3. Both automataAi and

Aj can make a transition with actiona. That is,qi
gi,a,Yi
→ q′i

∈ Ei, qj

gj ,a,Yj

→ q′j ∈ Ej , g = gi ∧ gj , Y = Yi ∪ Yj .

Definition 2 A Timed Game Automaton (TGA) is a TA
A = (Q, q0, Act,X, Inv, E) where the set of actionsAct is
split in two disjoint sets:Actc the set ofcontrollableactions
andActu the set ofuncontrollableactions.

The notions of network of TA, run and symbolic configura-
tion are defined in a similar way for TGA.

Given a TGAA and three symbolic configurationsInit,
Safe, andGoal, the reachability control problemor reach-
ability gameRG(A, Init, Safe, Goal) consists in finding a
strategyf such thatA starting fromInit and supervised by
f generates a winning run that stays inSafeand enforces
Goal. A finite or infinite runρ in Runs(A,Init) is winning
if either there is some state(l, v) ∈ ρ such that(l, v) |=
Goal and for all state(l′, v′) ∈ ρ (l′, v′) |= Safe. The set
of winning runs inA from Init is denotedWinRuns(Init,A).
A strategy is a partial mappingf from the set of runs ofA
starting fromInit to the set Actc∪{λ} (λ is a special symbol
that denotes ”do nothing and just wait”). For a finite runρ,
the strategyf(ρ) may say (1) no way to win iff(ρ) is unde-
fined, (2) do nothing, just wait in the last configurationρ if
f(ρ) = λ, or (3) execute the discrete, controllable transition
labeled byl in the last configuration ofρ if f(ρ) = l. A
strategyf is state-basedor memory-lesswhenever its result
depends only on the last configuration of the run.

Definition 3 Given the TGAA = (Q, q0, Act,X, Inv, E), a
strategy f overA is a partial function fromRuns(A) to
Actc ∪ {λ} s.t. for every finite runρ, if f(ρ) ∈ Actc then

last(ρ)
f(ρ)
→ (l′, v′) for some(l′, v′).

The restricted behavior of a TGAA controlled with
some strategyf is defined by the notion ofoutcome(de
Alfaro, Henzinger, and Majumdar 2001). The outcome
Outcome(q, f) is defined as the subset ofRuns(∐,A) that
can be generated fromq executing the uncontrollable actions
in Actu or the controllable actions provided by the strategy
f .

Focusing on reachability games, amaximal runρ is either
an infinite run or a finite run that satisfies either i)last(ρ) |=

Goal or ii) if ρ
a
→ thena ∈ Actu (i.e. the only possible

next discrete actions fromlast(ρ), if any, are uncontrollable
actions).

A strategyf is a winning strategyfrom q if all maximal
runs inOutcome(q, f) are inWinRuns(q,A). A state q
in a TGAA is winning if there exists a winning strategyf
from q in A.

UPPAAL-TIGA

This tool (Behrmann et al. 2007) extends UPPAAL (Larsen,
Pettersson, and Yi 1997) providing a toolbox for the speci-
fication, simulation, and verification of real-time games. If
there is no winning strategy, UPPAAL-TIGA gives a counter
strategy for the opponent (environment) to make the con-
troller lose.

To model concurrent systems, timed automata can be ex-
tended with parallel composition. In the UPPAAL-TIGA
modeling language (Larsen, Pettersson, and Yi 1997), the
CCS parallel composition operator is used, which allows in-
terleaving of actions as well as hand-shake synchronization.
To model hand-shake synchronization, the action alphabet
is assumed to consist of symbols for input action denoted
asa?, output actions denoteda!, and internal actions repre-
sented by the distinct symbolτ .

Given a nTGANA, a set of goal states (win) and/or a set
of bad states (lose), both defined by UPPAAL state formulas,
four types of winning conditions can be issued (Behrmann
et al. 2007). For all of them, the solution of the game is
a controllable strategyf such thatNA supervised byf en-
sures that:A♦win (must reach win);A[not(lose)U win]
(must reach win and must avoid lose);A[not(lose)W win]
(should reach win and must avoid lose);A�not(lose) (must
avoid lose).

Building TGA from Timeline-based Planning
Specifications

The main contribution of this work is in showing how flex-
ible timeline-based plan verification can be performed solv-
ing a TGA Reachability Game. To this end, this section de-
scribes how we encode a flexible timeline-based plan and
the related domain theory into a suitable nTGA. While, the
next section presents the Reachability Game definition and
how UPPAAL-TIGA can be exploited to solve it.

Concerning the encoding, we first define a TGA for each
planned flexible timeline. Then, for each state variableSV,
we define a correspondent TGA, while Domain Theory is
encoded by means of an Observer automaton. This also
checks that plan and state variables assume consistent val-
ues over all the planning horizonH. In general, state vari-
ables can present both controllable and uncontrollable val-
ues. Here, we choose to partition state variables in control-
lable and uncontrollable, simplifying the formalization.But,
it is worth noting that we are able to handle the general case
as well.

Flexible Plan Encoding

Given a flexible planP = {T L1, . . . , T Ln}, we define a
TGA for eachT Li. We consider a unique overallplan clock
cp. Each automaton has the same number of states as the
length of the timeline: for each activation available in the
plan we introduce a state while a finalgoal state represents
plan completion.

For each planned flexible timelineT L, we
define a Timed Game AutomatonAT L =
(QT L, q0,ActT L,XT L,InvT L, ET L) as follows:

– for each i-th plan step in the flexible plan, we addli in
QT L; In addition, a last locationlgoal is considered in
QT L;

– q0 is l0;

– for each allowed valuev in SV, we consider an output
actionav!; if the related state variable is controllable (un-
controllable) we addav in ActcT L (ActuT L);

– we consider the one clockcp in XT L;

– for each i-th plan step and related flexible interval time
point [lb, ub], we consider InvT L(li) := cp ≤ ub;

– for each i-th plan step and related planned valuevp and
flexible interval time point[lb, ub], we consider a transi-

tion e = q
g,a,Y
→ q′ in ET L, whereq = li, q′ = li+1,

g = cp ≥ lb, a = vp!, Y = ∅;

– given the plan lengthpl, we consider a last transitione =

q
g,a,Y
→ q′ in ET L, whereq = lpl, q′ = lgoal, g = ∅,

a = ∅, Y = ∅;

The set of automataPlan = {AT L1
, ...,AT Ln

} constitutes
a nTGA that represents the planned timelines description.

State Variables Encoding
For each state variableSV = 〈V, T ,D〉, we
define a Timed Game AutomatonASV =
(QSV , q0,ActSV ,XSV ,InvSV , ESV) as follows:

– for each allowed valuev in V, we add a locationlv in
QSV ;

– q0 is chosen amongQSV elements according to the initial
value of the planned flexible timeline on the same state
variableSV;

– for each allowed valuev in V, we consider an input action
av?; if the state variable is controllable (uncontrollable)
we addav in ActcSV (ActuSV);

– we consider one automata clockcsv in XSV ;

– for each allowed valuev in V andD(v) = [lb, ub], we de-
fine InvSV (v) := csv ≤ ub;

– for each allowed valuev in V, the set of T (v) =
{vs1, ..., vsn} and the duration constraintD(v) = [lb, ub],

for each valuevsi we define a transitione = q
g,a,Y
→ q′,

whereq = lv, q′ = lvsi
in ESV , g = cSV ≥ lb, a = aq′?,

Y = {cSV }.

The set of automataSV = {ASV1
, ...,ASVn

} constitutes a
nTGA that represents the State Variables description. Note
that the use of input and output actions implements the syn-
chronization between state variables and planned timelines.
That is, onceAT Li

fires a transition labeled withav!, the re-
latedASV1

must fire a correspondent transition labeledav?
(AT Li

rulesASVi
).

Observer Encoding
A last TGA constitutes anObserverautomaton that is to su-
pervise the validity of synchronizations and values overSV
andPlan.

We define a TGA AObs =
(QObs, q0,ActObs,XObs,InvObs, EObs) as follows:

– QObs = {lok, lerr};

– q0 is lok;

– we consider a unique uncontrollable actionafail,
ActObs =ActuObs = {afail};

– we consider the same plan clockXObs = {cp};

– InvObs is not defined;

– for each state planned timelineT L and the related vari-
ableSV, plan stepsp and related planned valuevp, we

consider an uncontrollable transitione = q
g,l,r
→ q′ in

EObs, whereq = lok, q′ = lerr, g = PT sp
∧ ¬SVvp

,
l = afail, r = ∅;

– for each synchronization 〈T L, v〉 −→
〈{T L′

1, . . . , T L′
n}, {v

′
1, . . . , v

′
n} ,R〉 we consider

an uncontrollable transitione = q
g,a,Y
→ q′ in EObs where

q = lok, q′ = lerr, g = ¬R(T Lv, T L
′

1v
′

1

, . . . , T L
′

nv
′

n
),

a = afail, Y = ∅.

The nTGAPL composed by the set of automataPL =
SV ∪Plan∪{AObs} encapsulates Flexible plan, State Vari-
ables and Domain Theory descriptions.

Verifying Time Flexible Plans
Given the nTGAPL obtained following the encoding pro-
cess presented above, we can define a Reachability Game
that ensures, if successfully solved, plan validity.

Theorem 1 Given aRG(PL, Init, Safe, Goal) defined con-
sidering Init = {q | q is q0 ∈ QT Li

∀T Li ∈ Plan} ∪
{q | q is q0 ∈ QSVi

∀SVi ∈ SV } ∪ {q | q is q0 ∈ QObs},
Safe= {lok} and Goal = {l | l is lgoal ∈ QT Li

∀T Li ∈
Plan}, solving/winning the game implies plan validity for
T L.

Proof Sketch. The proof is composed of two parts. First,
we show that the nTGAPL describes all and only the be-
haviors defined by the flexible planP = {T L1, . . . , T Ln}.
Then, we prove that solving theRG(PL, Init, Safe, Goal)
corresponds to verify the plan.

The set of automataPlan = {AT L1
, ...,AT Ln

} repre-
sents all the possible planned temporal behaviors over all
the timelines. In fact, each automatonAT Li

describes the
planned temporal sequence of values for theT Li timeline
within the planning horizonH. While, automata inSV
= {ASV1

, ...,ASVn
} represent exactly the given state vari-

ables description. We recall that the use of input/output ac-
tions implements straightforward relations between allowed
values and planned values for each timeline. By construc-
tion, we have a one-to-one mapping between flexible plan
behaviors and automata behaviors: for each behavior inPlan
∪ SV, we have a behavior inP and vice versa (any possible
behavior inPlan∪ SVbut not in a flexible plan would vio-
late temporal timepoint plan constraints, any possible flexi-
ble plan behavior inP but not inPlan∪SVwould violate au-
tomata guards or invariants). Finally, the Observer automa-
ton checks for both values consistency (between planned

timelines and state variables) and synchronizations satisfac-
tion. Value consistency is trivial. Again, by construction,
the Observer holds into the error location when a transition
guard is activated, that is, when the related flexible behavior
violates the associated synchronization. On the other hand,
when a flexible behavior violates a synchronization, the re-
lated guard is activated, hence enforcing the error location
for the Observer.

At this point we have that, if there exists a win-
ning strategyf for RG(PL, Init, Safe,Goal), then the
Outcome(Init, f) represents the subset ofRuns(PL) ⊆
WinRuns(Init, f) that guarantees that (i)Goal states are
reached and (ii)Safe states are enforced. This means that
eachρ ∈ Outcome(Init, f) reaches all the locations in
{l | l is lgoal ∈ QT Li

∀T Li ∈ Plan} while the observer
holdslok. From this, it is straightforward that for each time-
line T Li, all the transitions can be performed maintaining
allowed values (w.r.t. state variable definition) and without
violating any synchronization. Thus, the plan is valid.�

To search for winning strategies forRG(PL, Init, Safe,
Goal) (and then to verify the plan), we exploit UPPAAL-
TIGA. This can be done by checking the following for-
mula: Φ = A [Safe U Goal]. This formula states that,
for each possible evolution of uncontrollable state variables,
goals must be reached while errors must be avoided. If ver-
ified, UPPAAL-TIGA returns a control execution strategy
that guarantees (if correctly ”executed”) to reach planning
goals for all possible temporal world evolutions. Thus, veri-
fying the above property implies validating the flexible tem-
poral plan.

In addition to this, we can ask UPPAAL-TIGA to ver-
ify additional properties like, for instance, undesired states
avoidance. In fact,Safe configuration can be enriched
with additional statements. That is,Safe = {lok} ∪
{¬stateundesired}. Then, the computed strategy ensures
not only to reach goals but also to maintain safe state and
to avoid undesired states.

Moreover, another important issue can be addressed ex-
ploiting our verification approach: plan controllability.

Recalling thedynamic controllabilitydefinition for time-
lines, we notice that: 1) each possible evolution of uncon-
trollable timeline/automaton inPL corresponds to a projec-
tion p; 2) each strategy/solution for theRG corresponds to a
scheduleT ; 3) a set of winning strategies represents a viable
execution strategyS.

Thus, UPPAAL-TIGA verifiesΦ (i.e., checks how to
win the RG) producing a viable execution strategy. Since
UPPAAL-TIGA verification process operates on the basis
of forward algorithms (Behrmann et al. 2007), the produced
execution strategyS is such thatSp1{≺ x} = Sp2{≺ x} ⇒
Sp1(x) = Sp2(x) for each controllable timepointx and pro-
jectionsp1 andp2. As a consequence, we obtain the follow-
ing Corollary.

Corollary 1 Given RG(PL, Init, Safe, Goal) defined as
above and using UPPAAL-TIGA to find a winning execution
strategyS. If UPPAAL-TIGA solvesRG then the flexible
plan is dynamically controllable by means ofS.

We shall notice that our approach to dynamic controlla-
bility checking relies on the fact that the verification tool
works with forward algorithms; otherwise, nothing can be
said about dynamic controllability.

Case Study and Preliminary Experiments
In this section, we present the application of our method in
a specific case study. In our recent work we have considered
variants of a real application case studies (Cesta et al. 2008;
2009b). The same experience has been used here to derive a
general planning problem. Basically, a remote space agent is
to be controlled in order to accomplish some required tasks
(science, communication and maintenance activities). Tasks
have to be temporally synchronized with exogenous events
that occur independently from agent control.

Figure 1:Value transitions for the a main state variable describing
the Remote Space Agent temporal behavior.

We represent the domain problem with two different types
of state variables:Controllable State Variables, which de-
fine the search space of the problem, and whose timelines
ultimately represent the solution to the problem;Uncontrol-
lable State Variables, representing values imposed over time
which can only be observed. Modeling the agent activities,
we use a single controllable state variable which specifies
the temporal occurrence of science and maintenance oper-
ations as well as the agent’s ability to communicate. The
values that can be taken by this state variable, their dura-
tions and the allowed transitions among them, are detailed
in Figure 1.

In addition, we instantiate two uncontrollable state vari-
ables to represent contingent events such as orbit events
and communication opportunity windows. One state vari-
able maintains the temporal occurrences of pericentres and
apocentres. We are supposing the remote agent is opera-
tive around a target planet. Pericentre is the orbital closest
to the target planet while apocentre is the orbital far away
from the planet. (“PERI” and “APO” values on the time-
line in Figure 2, top) of the agent’s orbit (they are fixed in
time), while the other state variable maintains the visibility
of ground stations (Ground Station Availability timeline in
Figure 2, bottom). This state variable has as allowed values
{Available, Unavailable}.

Any valid plan needs synchronizations among the agent
timeline (Figure 2, middle) and the uncontrollable timelines
(represented as dotted arrows in Figure 2): science opera-
tions must occur during Pericentres, maintenance operations

Figure 2:Timeline synchronizations in a plan.

must occur in the same time interval as Apocentres and com-
munications must occur during ground station visibility win-
dows. In addition to those synchronization constraints, the
operative mode timeline must respect transition constraints
among values and durations for each value specified by the
domain (see again Fig. 2).

Using UPPAAL-TIGA

We now show how planning domains can be encoded in
the specification language of UPPAAL-TIGA. This requires
defining a suitable set of automata and clocks. Automata are
associated with multi-valued state variables while clocksare
necessary to represent time progress.

For each state variable (and hence for each timeline) we
have astate variable timed automatonwhose modes cor-
respond to possible state variable values, while transitions
represent changes of values. State variable definition in-
cludes temporal constraints specified by means of: value
durations constraints (in terms of[min, max]); sequencing
constraints between values expressed through Allen’s tem-
poral relations.

Durations constraints (e.g., Science activity duration in
[2160, 4080]) are encoded as both clock mode invariants and
guards on the related outgoing transitions. While sequenc-
ing constraints (e.g., SciencemeetsSlew) are encoded defin-
ing appropriate outgoing transitions.

In Figure 3 we report the complete UPPAAL-TIGA mod-
ule declaration for the agent state variable.

Plan verification requires an input model that encodes also
the generated plan. Since a generated plan provides a set
of value activations (associated with time points) (planned
timeline) for each state variable, a plan describes the se-
quence of values the state variables are to assume in a given
time frame. To represent flexible plans, we consider an ad-
ditional generalplan clockand we introduce an automaton
for each planned behavior. This automaton has a number
of modes that equals the length of the plan: for each acti-
vation/decision available in the plan we introduce a mode
while a finalgoal mode represents plan completion. An in-
variant is considered to model maximum staying duration.
Transitions between modes represent plan steps, from initial
value to the last one. For each transition, we introduce a

process REMOTE_AGT() {
state

Earth, Earth_Comm,
Science {clockREMOTE_AGT <= 4080},
Maintenance {clockREMOTE_AGT <= 5400},
Slew {clockREMOTE_AGT <= 1800};

init Earth;
trans

Earth -> Slew { guard clockREMOTE_AGT >= 1;
sync pulse_Slew?; },

Earth -> Maintenance { guard clockREMOTE_AGT >= 1;
sync pulse_Maintenance?;
assign clockREMOTE_AGT := 0;},

Earth -> Earth_Comm { guard clockREMOTE_AGT >= 1;
sync pulse_Earth_Comm?;
assign clockREMOTE_AGT := 0;},

Earth_Comm -> Earth { guard clockREMOTE_AGT >= 3600;
sync pulse_Earth?;
assign clockREMOTE_AGT := 0;},

Earth_Comm -> Maintenance { guard clockREMOTE_AGT >= 3600;
sync pulse_Maintenance?;
assign clockREMOTE_AGT := 0;},

Earth_Comm -> Slew { guard clockREMOTE_AGT >= 3600;
sync pulse_Slew?;
assign clockREMOTE_AGT := 0;},

Science -> Slew { guard clockREMOTE_AGT >= 2160;
sync pulse_Slew?;
assign clockREMOTE_AGT := 0;},

Maintenance -> Earth { guard clockREMOTE_AGT >= 5400;
sync pulse_Earth?;
assign clockREMOTE_AGT := 0;},

Maintenance -> Earth_Comm { guard clockREMOTE_AGT >= 5400;
sync pulse_Earth_Comm?;
assign clockREMOTE_AGT := 0;},

Slew -> Earth { guard clockREMOTE_AGT >= 1800;
sync pulse_Earth?;
assign clockREMOTE_AGT := 0;},

Slew -> Earth_Comm { guard clockREMOTE_AGT >= 1800;
sync pulse_Earth_Comm?;
assign clockREMOTE_AGT := 0;},

Slew -> Science { guard clockREMOTE_AGT >= 1800;
sync pulse_Science?;
assign clockREMOTE_AGT := 0;};

}

Figure 3: Module definition for the Remote Space Agent. Note
that the clock is checked on seconds.

guard that enables transition at the minimum staying dura-
tion.

In order to consider both controllable and uncontrollable
state variables, we introduce uncontrollable TGA transitions
for uncontrollable components.

In Figure 4, two encodedplan automataare depicted:
a) a flexible plan for the remote agent that is to be verified;
b) a behavior of the ground station availability state vari-
able. Note that synchronization channels are exploited to
relate planned values to state variables automaton. For in-
stance, the second transition in Figure 4a synchronizes with
related transition defined in Figure 3 between Slew and Sci-
ence modes.

In addition, we introduce another automaton: theob-
server automaton. It is to check the consistency of temporal
constraints defined both on and among different timelines,
i.e., to check sequencing and synchronizations constraints.
Synchronization constraints among different timelines are
expressed in terms of general temporal relations on values.

Given the above input model, we ask UPPAAL-TIGA to
verify the following formula:control: A [not monitor.ERR
U plan.Goal]. This formula means that for each possible
evolution of uncontrollable components, the goal must be
reached while monitor errors must be avoided. If verified,
UPPAAL-TIGA returns a control execution strategy that, if
respected, guarantees to reach planning goal in all possible

Figure 4: TIGA models for timelines: a) controllable state vari-
able; b) uncontrollable state variable.

process monitor() {
state OK, ERR;
init OK;
trans

OK -u-> ERR { guard (stepREMOTE_AGT == 0)
and not (REMOTE_AGTEarth); },

OK -u-> ERR { guard (stepREMOTE_AGT == 1)
and not (REMOTE_AGTSlew); },

...
OK -u-> ERR { guard ((REMOTE_AGTEarth_Comm)

and not (STATIONSAvailable)); },
OK -u-> ERR { guard ((REMOTE_AGTMaintenance)

and not (ORBIT_EVENTSApocentre)); },
OK -u-> ERR { guard ((REMOTE_AGTScience)

and not (ORBIT_EVENTSPericentre)); },
ERR -u-> ERR { };

}

Figure 5:Partial monitor module definition. Note that Monitor is
uncontrollable.

world evolutions. Thus, verifying the above property im-
plies validating the flexible temporal plan.

Since the input model incorporates all domain tempo-
ral constraints, the UPPAAL-TIGA verification algorithms
guarantee that all time points in the strategy only depend on
occurrences of past events. Such a feature constitutes the
condition of dynamic controllability for a flexible temporal
plan. So, verifying the formula not only guarantees plan va-
lidity but it also ensures dynamic controllability.

Empirical Results
In order to show the feasibility of our approach, we present
experimental results on preliminary tests focusing on the
analysis of the dependency of plan verification performance
from the degree offlexibility.

We generate a flexible plan by introducing flexibility into
a completely instantiated plan. This is done by replacing a
time pointt = τ in the instantiated plan with a time interval
t ∈ [τ − ∆, τ + ∆] in the flexible plan. The main param-
eters we consider are: the numberΦ of time points that are
replaced with time intervals and the width (duration) ∆ of
such intervals.

We perform two kind of experiments. First, keeping∆
constant (∆ = 10), we study how plan verification time de-
pends on the plan size (i.e., the number of plan time points)
and on the number of flexible time pointsΦ. Second, keep-
ing constant the plan size (to 35 time points), we study how
plan verification time depends on the number of flexible time

pointsΦ and on the duration∆.
We run our experiments on a Linux workstation endowed

with a 64-bit AMD Athlon CPU (3.5GHz) and 2GB RAM.
GivenΦ and∆, an experiment consists in choosing at ran-
domΦ plan time points, replacing such chosen time points
with time intervals of duration∆, running the UPPAAL-
TIGA verifier and, finally, measuring the verification time.
For each configuration we repeat our experiment 5 times and
compute the mean value (in msecs.) and variance (±var) for
the verification time.

We note that not all experiments relative to given values
for Φ and∆ yield a satisfiable flexible temporal plan. In fact,
since the plan is only flexible at certain time points, the de-
grees of freedom may not suffice to recover from previously
delayed (or anticipated) actions. Of course this is particu-
larly the case whenΦ is small with respect to the plan size.
Accordingly, our verification times refer to passing (i.e.,the
given flexible temporal plan is dynamically controllable) as
well as failing (i.e., the given flexible temporal plan is not
dynamically controllable) experiments.

Table 1 shows our results for the first kind of experiments.
From this figure we see that the verification tool has homo-
geneous performances over all the configurations.

Table 2 shows our results for the second kind of exper-
iments. From this figure we see that the verification tool
handles well flexible plan with higher and higher degrees of
flexibility both in terms ofΦ and∆.

Table 1: Experimental results collected varying plan length
and the number of flexible time points(Timings in msecs.)

P
P

P
P

P
P

Φ

plan size
10 20 35

3 35.6±0.8 36.6±1.7 37.4±0.5

6 35.2±0.4 36±0 37.4±0.5

9 36±1.8 36.2±0.4 39.2±1.9

12 34.8±0.4 36.4±0.5 37.8±0.4

15 35±0 36.2±0.4 43.6±10.2

18 35±0 40±8 39±0

Table 2: Experimental results collected with a fixed plan
length (Timing in msecs.).

H
H

H
H

Φ

∆
1 5 10 15 20

3 40±6 37.4±0.5 37.8±0.4 51±7.8 37.8±1

6 38.4±0.5 38.6±1.2 38±0 44.4±8.5 38.2±0.4

9 38.4±0.5 38±0 39.2±1.9 39±0 38.8±0.4

12 52.4±10.3 38.8±0.4 38.4±0.5 39±0 39.4±0.5

15 39.2±0.4 52±13 39.2±0.4 39.2±0.4 39.8±0.4

18 39.6±0.5 39.6±0.8 40.4±1.5 48.8±9.1 40±0.6

Conclusion
This paper introduces a method to represent and verify flex-
ible plans using TGA and UPPAAL-TIGA. In particular, it
describes the verification method, detailing the formal repre-
sentation and the modeling methodology. To show the feasi-
bility and the effectiveness of the approach we have consid-

ered the relevant problem of dynamic controllability check-
ing.

Notice that, since we use a general purpose model-
checker, verification is PSPACE complete. However, this
is only a theoretical result and UPPAAL-TIGA algorithm
yields very encouraging performance results in practice
(Cassez et al. 2005). In fact, the results presented here show
that UPPAAL-TIGA allows effective verification of flexible
temporal plan by directly using the implicit representation
of the state variable models. Therefore, model-checking in
UPPAAL-TIGA on the one hand provides a useful indepen-
dent verification tool for flexible timelines, on the other hand
permits plan verification of the flexible plans produced by
a black-box planner avoiding to rebuild associated STPU.
Moreover, it produces results that can be further exploited
as follows. First, from a valid flexible plan we can extract
a strategy that can be used to safely execute the given plan.
Second, an invalid plan can be analyzed and information can
be obtained by the tool, helping users to identify weakness
causes and provide useful hints on how to obtain a valid plan.

Acknowledgments. Cesta, Fratini, Orlandini and Tronci
are partially supported by the EU project ULISSE (Call
“SPA.2007.2.1.01 Space Science”. Contract FP7.218815).
Cesta and Fratini are also partially supported by European
Space Agency (ESA) within the Advanced Planning and
Scheduling Initiative (APSI). Aspects from this paper are
synthetically presented in (Cesta et al. 2009a).

References
Abdedaim, Y.; Asarin, E.; Gallien, M.; Ingrand, F.; Lesire,
C.; and Sighireanu, M. 2007. Planning Robust Tem-
poral Plans: A Comparison Between CBTP and TGA
Approaches. InICAPS-07. Proceedings of the Seven-
teenth International Conference on Automated Planning
and Scheduling, 2–10.
Alur, R., and Dill, D. L. 1994. A theory of timed automata.
Theoretical Computer Science126:183–235.
Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.;
Larsen, K. G.; and Lime, D. 2007. UPPAAL-TIGA: Time
for playing games! InProc. of CAV-07, number 4590 in
LNCS, 121–125. Springer.
Bresina, J.; Jonsson, A.; Morris, P.; and Rajan, K.
2004. Mixed-initiative constraint-based activity planning
for mars exploration rovers. InIWPSS-04. Proceedings of
4th International Workshop on Planning and Scheduling
for Space.
Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime,
D. 2005. Efficient on-the-fly algorithms for the analysis of
timed games. InCONCUR 2005, 66–80. Springer-Verlag.
Cesta, A., and Fratini, S. 2008. The Timeline Represen-
tation Framework as a Planning and Scheduling Software
Development Environment. InPlanSIG-08. Proceedings
of the 27th Workshop of the UK Planning and Scheduling
Special Interest Group, Edinburgh, UK, December 11-12.
Cesta, A.; Fratini, S.; Oddi, A.; and Pecora, F. 2008.
APSI Case#1: Pre-planning Science Operations in MARS

EXPRESS. In i-SAIRAS-08. Proceedings of the 9th Int.
Symp. on Artificial Intelligence, Robotics and Automation
in Space. JPL, Pasadena, CA.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2009a. Flexible Timeline-Based Plan Verification. In
KI 2009, volume 5803 ofLNAI.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2009b. Validation and Verification Issues in a Timeline-
Based Planning System.Knowledge Engineering Review
(To appear).
de Alfaro, L.; Henzinger, T.; and Majumdar, R. 2001.
Symbolic Algorithms for Infinite-state Games. InProceed-
ings of the 12th International Conference on Concurrency
Theory, pp. 536–550. Lecture Notes in Computer Science
2154, Springer-Verlag.
Frank, J., and Jonsson, A. 2003. Constraint Based Attribute
and Interval Planning.Journal of Constraints8(4):339–
364.
Howey, R., and Long, D. 2003. VAL’s Progress: The
Automatic Validation Tool for PDDL2.1 Used in the In-
ternational Planning Competition. InProceedings of the
ICAPS Workshop on The Competition: Impact, Organiza-
tion, Evaluation, Benchmarks, 28–37.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in Interplanetary Space: The-
ory and Practice. InAIPS-00. Proceedings of the Fifth Int.
Conf. on Artificial Intelligence Planning and Scheduling,
177–186.
Khatib, L.; Muscettola, N.; and Havelund, K. 2001. Map-
ping Temporal Planning Constraints into Timed Automata.
In TIME-01. The Eigth Int. Symposium on Temporal Rep-
resentation and Reasoning, 21–27.
Larsen, K. G.; Pettersson, P.; and Yi, W. 1997. UPPAAL
in a Nutshell. International Journal on Software Tools for
Technology Transfer1(1-2):134–152.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the Synthe-
sis of Discrete Controllers for Timed Systems. InSTACS,
LNCS, 229–242. Springer.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. InProc. of AAAI 2005, 1193–
1198.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
Control of Plans With Temporal Uncertainty. InProc. of
IJCAI 2001, 494–502.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed.,Intelligent
Scheduling. Morgan Kauffmann.
Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the
Gap Between Planning and Scheduling.Knowledge Engi-
neering Review15(1):47–83.
Vidal, T., and Fargier, H. 1999. Handling Contingency
in Temporal Constraint Networks: From Consistency To
Controllabilities.JETAI11(1):23–45.
Vidal, T. 2000. Controllability Characterization and
Checking in Contingent Temporal Constraint Networks. In
Proceedings of KR-00.

