
Verification and Validation of a
Deep Space Network Scheduling Application

Mark D. Johnston and Daniel Tran

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena CA USA 91109

mark.d.johnston & daniel.tran @jpl.nasa.gov

Abstract
Scheduling NASA’s Deep Space Network (DSN) presents a
challenging problem due to its size, dynamic character, and
collaborative approach to resolving schedule conflicts. This
paper describes an ongoing project to automate the DSN
scheduling process, and our approach to verification and
validation of the scheduling engine component of the new
system. The scheduling engine is responsible for interpret-
ing user’s requests for communications and other services
from the DSN, then generating and checking schedules that
achieve those requests to the greatest extent possible. It also
identifies and resolves conflicts in the schedule. We describe
the overall DSN scheduling domain, some of the associated
V&V challenges, and recent progress towards meeting these
challenges.

Introduction
The NASA Deep Space Network (DSN) consists of three
large complexes of antennas, spaced roughly evenly in
longitude around the world at Goldstone, California; Ma-
drid, Spain; and Canberra, Australia. Each complex con-
tains one 70 meter antenna along with a number of 34 me-
ter and smaller antennas, as well as the electronics and
networking infrastructure to command and control the an-
tennas and to communicate with various mission control
centers. For a more extensive background on the DSN,
refer to Umbriale (2003).
 All NASA planetary and deep space missions, as well as
many international missions, communicate to Earth
through the DSN. In some cases, missions closer to Earth
also use the DSN, some routinely, others on an occasional
basis. The capabilities of the DSN make it a scientific facil-
ity in its own right, so it is used for radio astronomy (in-
cluding very long baseline interferometry) as well as radio
science investigations. At present, there are about 40 regu-
lar distinct users of DSN, who together schedule about

500 activities per week. Over the next few decades, utiliza-
tion of the DSN is expected to grow significantly, with
more missions operating, higher data rates and link com-
plexities, and the possibility of manned mission support. In
addition, there is significant pressure to reduce ongoing
operations costs while maintaining an around the clock
operational capability.
 Scheduling the DSN is an extended process (see e.g.
(Clement and Johnston 2005 and references therein),
driven primarily by the needs of some mission users to
sequence their spacecraft sufficiently far in advance with
sure knowledge of when they will have communications
with the ground. A typical goal is to have an initial sched-
ule in place 18 weeks ahead of execution, and for it to be
conflict-free by 8 weeks out. Due to the effort involved,
and the occurrence of unexpected events such as launch
slips and spacecraft emergencies, this desired lead time is
rarely achieved in practice. Unlike other NASA communi-
cations networks, the DSN is essentially scheduled by its
users. What this means in practice is that users define their
scheduling needs (consistent with overall service agree-
ments), and then work together to resolve conflicts in the
resulting integrated schedule. The process allows for esca-
lation should consensus not be reached among the users,
but this is extremely rare. The DSN process is in contrast
with other communications networks where a central net-
work authority resolves contention, e.g. based on a strict
priority scheme.
 Software support for scheduling the DSN is currently a
heterogeneous collection of tools and databases. Users
provide their scheduling requirements in text documents
and email, and use a graphical schedule editing tool called
TIGRAS for entering and editing individual scheduled
communications passes, often called tracks. A separate
program is used to generate PostScript and PDF graphical
views of the schedule. The final schedule is loaded into the
Service Preparation System (SPS) database for dissemina-
tion via an internet portal, and for generation of the data
products that are used to actually control the antennas and Copyright © 2009, California Institute of Technology. Government spon-

sorship acknowledged.

other equipment at the DSN complexes. Late changes are
handled by using TIGRAS to edit the SPS version of the
schedule.
 The DSN is currently implementing a new scheduling
system, designated Service Scheduling Software, or S3. The
primary objectives of new system are to:
• consolidate and modernize the tools and databases

used in the DSN scheduling process into a single suite
• adopt a request-driven approach to scheduling (in con-

trast to the activity-driven approach used in the past)
• provide an interactive collaborative environment for

DSN users to investigate and mutually resolve schedule
conflicts

S3 is in development now and is planned to become opera-
tional in late 2010. In the following we describe S3 at a
high level, then in more detail the DSN Scheduling Engine
component that is the focus of this paper. We describe our
overall verification and validation (V&V) goals, some of
the challenges encountered, and the overall approach we
have adopted. We then describe some of the specific tools
and processes we are using during system development to
accomplish our goals, and finally we offer some general
conclusions.

Service Scheduling Software (S3)
The overall architecture of S3 is illustrated in Figure 1.

DSE
(AMA/
Aspen)

DSE
(AMA/
Aspen)

SSS web app

session

SPS+SSS DB

DSE
client

DSE

manager

(SMA)

JMS messagebus
HTTP

DSE

engine

(AMA/

Aspen)
Reports

notifications

Import:

- events

- requests

...

SSS (S
3

) GUI/DB Scheduling Engine (DSE)

SPS Portal

Figure 1. Architectural overview of the Service Scheduling
Software (S3) system. The Service Preparation System
(SPS) Portal is an existing schedule portal with which S3
will be integrated.

 The components on the left (S3 GUI/DB) include the S3
web application through which users interact with all ele-
ments of the system. This portion of the system connects to
an Oracle database to hold scheduling and all related data
needed throughout the process. Users can generate reports
and upload files from their local environments, using noth-
ing more than a standard web browser to work with the
system. Notifications can be viewed from within the appli-
cation’s web browser environment, or selectively routed to
regular email.

 Shown on the right of Fig. 1 is the DSN Scheduling En-
gine, a distributed set of server processes dynamically allo-
cated to users as needed. The client library labeled “DSE
Client” provides the link between these two major compo-
nents of S3. The DSE uses a protocol analogous to HTTP
sessions so that each scheduling engine process can pro-
vide dedicated low-latency responsiveness to one user at a
time. Individual servers register their availability with the
DSE Manager (Schedule Manager Application, or SMA),
which locates and assigns free DSE engine processes (AS-
PEN Manager Applications, or AMAs). To handle the ex-
pected number of simultaneous S3 users, as many as sev-
eral hundred AMA instances may be running at once, dis-
tributed over a number of the host computers that are part
of the overall portal environment.
 As noted above, S3 is adopting a request-driven ap-
proach to scheduling the DSN, in contrast to current prac-
tice which can be best described as activity-driven. In an
activity-driven approach, the schedule is created and man-
aged entirely in terms of scheduled activities (communica-
tions passes), where the intent of each activity, and its rela-
tionships to other activities, is only sketchily contained in
the schedule and related data. In contrast, in the request-
driven approach, the scheduling request is the primary en-
tity driving the scheduling process. Each request includes
an implicit specification of activities that will be required
to satisfy the request, including their allowed flexibilities in
timing or resources. The advantages of a request-driven
approach include:
• leveraged effort: one scheduling request can generate

and be used to manage many scheduled activities, and a
change to a request can propagate to all activities de-
rived from it; this can significantly reduce the ongoing
effort needed to generate the schedule and manage its
changes

• automated continuous schedule validation: based on
the request specification, the schedule can be continu-
ously monitored for constraint and preference satisfac-
tion; this can help minimize the effort to ensure that
schedule changes, as they invariably occur, will not
introduce undetected inconsistencies between requests
and activities

• traceability: all activities trace to scheduling requests
that describe the purpose and intent of the generated
activities

The main drawback of the request-driven approach is the
complexity of the request specification language. There are
many options and subtleties involved in describing the
constraints and preferences on DSN activities, and a suffi-
ciently rich representation of these is necessarily large and
complicated. This poses a significant challenge to the vali-
dation of the system.
 S3 is being developed as an integrated extension of the
Service Preparation System (SPS), an existing operational
system that provides a well-established portal to DSN users
for all schedule and navigation data, and products derived
from them. SPS includes a wide range of schedule validity
checks to ensure that the data used to execute the schedule

is correct and accurate. Thus, for example, ensuring that
scheduling errors do not drive the antennas out of their
operating ranges is and remains the responsibility of SPS.
Scheduling errors within S3 will have the very negative
consequence of requiring schedule rework late in the proc-
ess, but will not pose a threat to the DSN assets or the mis-
sions they support.

DSN Scheduling Engine (DSE)
The DSN Scheduling Engine (DSE) is one of the central
components of the S3 system (Johnston et al. 2009). The
major functional areas allocated to the DSE include:
• Schedule Conflict Checking
− identify any activities that violate DSN feasibility

rules, based solely on the schedule (i.e. independ-
ently of any scheduling requests), and characterize
the nature of the rule violation

• Scheduling Request Interpretation
− analyze scheduling requests for completeness and

validity, then return diagnostics useful to the end
user to help them formulate the request as intended

− expand scheduling requests into communication
passes (tracks) or other activities that satisfy the re-
quest specification

− match tracks in the schedule to requests, accounting
for the fact that users may separately edit tracks or
create/delete tracks

− determine whether activities in the schedule satisfy
or not the scheduling request with which they are
associated

• Schedule Repair
− repair schedule conflicts: for activities in conflict that

can be adjusted by the DSE (i.e. those not locked),
use the flexibilities specified in the scheduling re-
quest to adjust the activities to eliminate or reduce
conflicts

− repair request violations: for requests that are not
satisfied by their associated tracks, find a satisfying
assignment of tracks without increasing schedule
conflicts

• Schedule Query
− identify temporal intervals satisfying user-specified

conditions
− identify temporal intervals where a given scheduling

request can be potentially satisfied
• Schedule Optimization
− adjust scheduled activities to better satisfy preferred

request specifications

Scheduling Requests
Since scheduling requests constitute the driving data entity
in S3, this section provides an overview of what informa-
tion is contained in each scheduling request. This informa-
tion can be categorized broadly to include services, timing

constraints and relationships, preferences, priority, and
communications patterns.
 A scheduling request specifies DSN services required on
behalf of a user, along with any associated constraints and
preferences. A DSN service specifies use of any of the
available capabilities of the DSN, including uplink and
downlink services, Doppler and ranging (for spacecraft
navigation), as well as more specialized capabilities. The
details of a spacecraft’s service specification depend on the
onboard hardware and software (the frequency band, en-
coding, etc.). Along with other factors such as radiated
power levels and distance from the Earth, these all deter-
mine a set of antennas and associated equipment (transmit-
ters, receivers, etc.) that must be scheduled to satisfy the
request. However, these assets are not all equally desirable,
and so there are preferred choices for antennas and equip-
ment that also need to be considered.
 In addition to single antenna/single spacecraft communi-
cations, there are a variety of other DSN service types.
Some missions need the added sensitivity of more than one
antenna at once, and so make use of arrayed downlinks

Constraint Description
reducible whether and by how much the requested time

can be reduced to fit in an available opportunity
extensible whether and by how much the requested time

can be increased to take advantage of available
resources

splittable whether the requested time must be provided in
one unbroken track, or can be split into two or
more

split duration if splittable, the minimum, maximum, and pre-
ferred durations of the split segments; the
maximum number of split segments

split segment
overlap

if the split segments must overlap each other,
the minimum, maximum, and preferred dura-
tion of the overlaps

split segment
gaps

if the split segments must be separated, the
minimum, maximum, and preferred duration of
the gaps

viewperiods periods of visibility of a spacecraft from a
ground station, possibly constrained to special
limits (rise/set, other elevation limits)

events general time intervals that constrain when
tracks may be allocated; examples include:
• day of week, time of day (for accommodat-

ing shift schedules, daylight, ...)

• orbit/trajectory event intervals (occulta-
tions, maneuvers, surface object direct view
to Earth, ...)

Different event intervals may be combined and
applied to one request. The included events may
have a preference ordering.

Table 1: Timing constraints that play a dominant role in
the specification of scheduling requests.
Table 1: Timing constraints that play a dominant role in
the specification of scheduling requests.

using two or more ground antennas. For navigation data,
there are special scenarios involving alternating the re-
ceived signal between the spacecraft and a nearby quasar,
over a baseline that extends over multiple complexes. For
Mars missions, there is a capability to communicate with
several spacecraft at once (called Multiple Spacecraft Per
Aperture, or MSPA): while more than one may be sending
down data at once, only one at a time may be uplinking.
 Constraints on DSN scheduling requests fall into several
broad categories. The most important is timing: users need
a certain amount of communications contact time in order
to download data and upload new command sequences,
and for obtaining navigation data. How this time is to be
allocated is subject to many options, including whether it
must be all in one interval or can be spread over several,
and whether and how it is related to external events and to
spacecraft visibility. Table 1 lists a number of these factors.
 A second category of constraint is that of temporal rela-
tionships among contacts. In some cases, contacts need to
be sufficiently separated so that data collection has time to
accumulate data but not overfill onboard storage. In other
cases, there are command loss timers that are triggered if
the time interval between contacts is too long, placing the
spacecraft into safemode. During critical periods, it may be
required to have continuous communications from more
than one antenna at once, so some passes are scheduled as
backups for others.
 A third category of constraint can be called “distribu-
tion” requirements. These can cover an extended time span
and specify constraints on certain aspects of an overall set
of activities during that time. Examples include: a certain
proportion of 70m contacts; ensuring that navigation
passes are spread out roughly evenly between the northern
and southern hemisphere complexes; ensuring that not all
contacts for one mission during a week are on the same
antenna.
 In addition to constraints, there are numerous prefer-
ences that scheduling users have as to how their activities
are to be scheduled. Many would prefer additional time if
it is available, while at the same time are able to reduce
some contact durations in order to resolve a contentious
period on an antenna. There may be preferences on gap
durations, whether tracks are split or continuous, for tracks
to occur during day shift at a particular operations center,
and so on. While some of these preferences are implicit,
some must be explicit and, if they apply, need to be speci-
fied as part of the scheduling request.
 Priority plays a significant role in DSN scheduling, but
not the dominating role that it plays in some other systems
(e.g. Calzolari et al. 2008). Critical events (launches, sur-
face landings, planetary orbit insertions) preempt other
more routine activities. Other than critical activities, mis-
sions have higher priorities during their prime mission
phase than during their later extended missions. However,
higher priority does not automatically mean that resource
allocations are assured. Depending on their degree of flexi-
bility, missions trade off and compromise in order to meet
their own requirements, while attempting to accommodate

the requirements of other users. As noted above, one of the
key goals of S3 is to facilitate this process of collaborative
scheduling.
 One characteristic of DSN scheduling is that, for most
users, it is common to have repeated patterns of requests
over extended time intervals. Frequently these intervals
correspond to explicit phases of the mission (cruise, ap-
proach, fly-by, orbital operations). These patterns can be
quite involved, since they may interleave communication
and navigation requirements.

Schedule Conflicts
A schedule conflict is a violation of a DSN feasibility rule
in a schedule. Table 2 provides a list of the most common
conflict types for which the DSE is required to check.

Conflict Type Description
Spacecraft Multiple tracks of the same mission share the

same temporal extent (unless tracks are ar-
rayed, handoff, or meet other specific criteria)

Beginning of
Track (BOT)

Multiple tracks start within 15 min at Gold-
stone and 30 min at Canberra or Madrid.

Start of Activity
(SOA)

Multiple activities (pre-track setups) start
within 15 min at Goldstone and 30 min at
Canberra or Madrid.

Antenna
(Facility)

Multiple non-MSPA (Multiple Spacecraft Per
Aperture) tracks use the same antenna at one
time

Equipment Multiple tracks are scheduled to use the same
equipment during the same temporal extent

Viewperiod The spacecraft or other tracking target is out of
view of the tracking antenna

Teardown The post-track teardown time does not match
the expected teardown time

Setup The pre-track setup time does not match the
expected setup time

Table 2: Major conflict types in DSN scheduling.Table 2: Major conflict types in DSN scheduling.

!Figure 2. An example of a spacecraft conflict: multiple
non-arrayed antennas (14 and 63) are scheduled for the
MAP mission at the same time.

!Figure 3. An example of a facility conflict: multiple non-
MSPA missions (STA and STB) are placed on antenna 14.

Scheduling Request Violations
In contrast to conflicts, which are defined on scheduled
activities, scheduling violations refer to requests that are
not satisfied by activities on a particular schedule instance.
Table 3 provides a list of the most important types of viola-
tions that the DSE checks for when determining whether
scheduling requests are satisfied.

DSE Architecture
 There are two basic design principles around which the
DSE has been developed, derived from its role as provider
of intelligent decision support to DSN schedulers:
• no unexpected schedule changes
− all changes to the schedule must be requested, ex-

plicitly or implicitly
− the same sequence of operations on the same data

will always generate the same schedule (a principle
that has important implications for testability)

• always return something “reasonable”, even for infea-
sible scheduling requests, possibly by relaxing aspects
of the request
− if a request is determined to be infeasible, return a

diagnosis of the nature of the infeasibility: this pro-
vides a valuable starting point for users to diagnose
the problem

The DSE is implemented with ASPEN (Chien et al. 2000)
at its core, as indicated in Figure 5, lowest level. At the
next lowest level is an ASPEN DSN domain model ex-
pressing resource availability and reservations in terms of
timelines, driven by a schedule model API that incorpo-
rates the DSE search and other algorithms. Above this
layer we can distinguish between DSE processing that re-
quires comprehension of scheduling request specifications
(right) versus those functions that can be conducted with-
out scheduling requests. The latter include 1) identifying
schedule conflicts, and 2) schedule query functionality (e.g.
“find schedule gaps longer than 3 hours in duration on any
70 meter antenna on day 147 of 2009”).

ASPEN framework & libraries

DSN scheduling domain model

schedule model API

c
o

n
fl

ic
t

id
e
n

ti
fi

c
a
ti

o
n

s
c
h

e
d

u
le

 i
n

q
u

ir
y
 (

b
a
s
ic

)

conflict and

violation

processing

request/response processing

im
p

ro
v

e
 s

c
h

e
d

u
le

 q
u

a
li

ty
generate

resolution

options

resolve

s
c
h

e
d

u
le

 i
n

q
u

ir
y

(r
e
q

u
ir

e
m

e
n

ts
-o

ri
e
n

te
d

)

e
x
p

a
n

d
 r

e
q

u
ir

e
m

e
n

ts

 t
o

 t
ra

c
k
s

c
h

e
c
k
/v

a
li
d

a
te

/d
ia

g
n

o
s
e

re
q

u
ir

e
m

e
n

ts

DSE messaging API

D
S

E
 c

o
n

fi
g

u
ra

ti
o

n
 fi

le
s

requirements processing

Fig. 5. Major functional areas of the DSN Scheduling En-
gine, showing schematically how they are layered.

 Request comprehension is necessary for violation check-
ing, for request-based schedule queries, and for expanding
requests into candidate activities. When searching for reso-

!Figure 4. An example of a request reference violation:
though both tracks fall with in their viewperiods, the re-
quired separation interval between the tracks must be at
least 24 hours. In this example the tracks are separated by
approximately 12 hours.

Violation Type Description
Track Quantization The track start or end time violates the

request quantization constraint. For
example, requests can specify that
tracks start or end only at 5 minute in-
tervals.

Track Separation If the request is splittable, the separation
time between two tracks violates the
split segment overlap or split segment
gap constraint.

Track Duration If the request is splittable, the track
duration violates the request split dura-
tion constraint.

Service Specification The track violates the request service
specification, i.e. the antenna or equip-
ment allocated does not match the re-
quested service.

Total Track Duration The total track duration does not meet
the requested duration

Number of Tracks The number of tracks for the request
violates the maximum. For a non-
splittable track, this limit is 1; for a
splittable track, the limit may be speci-
fied.

Track Temporal Extent The track start or end time falls outside
the scheduling request’s time interval.

Viewperiod Reference The track time interval violates the
specified antenna in view marker.

Event Reference The track time interval violates the in-
tersection of the event time intervals
referenced by the scheduling request.

Request Reference The track time interval violates the
scheduling request’s temporal constraint
link to other requests.

Table 3: Scheduling request violations.Table 3: Scheduling request violations.

lutions for conflicted schedules or for unsatisfied requests,
the DSE makes full use of the alternatives and flexibilities
expressed in the scheduling request specification. The DSE
provides a family of parameterized strategies that users can
invoke independently or chained together. Among the op-
tions that users can control are:
• the order and repetitions of the different search phases
• how much time to invest in each solution search phase
• whether to focus on resolving conflicts or on request

violations
• which parameters and in what order to relax scheduling

request parameters if the DSE cannot find a satisfying
allocation to tracks

• whether to consider adjusting tracks to improve sched-
ule preferences, e.g. after a conflict resolution selection
that reduced tracks from nominal to minimal durations

In addition, users can control the focus of the DSE (in tem-
poral extent or on a subset of all mission users, or both.

V&V for the DSN Scheduling Engine
 Some of the goals and challenges of DSE V&V
include the following:
• Given the usage of the DSE as integrated with an en-

compassing web application being developed com-
pletely independently, how can we test it with as much
similarity to that deployment environment as possible?

• How can we channel the expert knowledge of DSN
scheduling end users to a) validate the scheduling re-
quest specification language, and b) provide a progres-
sive suite of test cases?

• User scheduling requests can have a complex structure
with many interacting elements: how can we validate
that such requests are in fact feasible?

• How can the existing heterogeneous scheduling tool
collection be used to best advantage in validating the
new system?

• Since ASPEN is used by numerous projects and the
core ASPEN code is shared across them all, how can
we ensure that ASPEN core changes do not impact
DSN scheduling engine functionality and behavior?

• How do we ensure that the DSE distributed server in-
frastructure will withstand the expected load in the S3
operational environment?

We discuss each of these topics in the following subsec-
tions.

Testing the DSE
The DSE interface to the S3 web application (See Figure 1)
is defined as a set of XML messages sent over a messaging
middleware layer (currently JMS). The structure of these
messages is fully defined by an XML schema document. In
order to simplify this interface for the purposes of integra-
tion with the remainder of S3, we have defined a client Java
library that can be incorporated directly in the S3 web ap-

plication, through which all messages to the DSE are
routed. Based on this, we have developed a test harness to
drive the DSE exactly as it will be driven when integrated
with the web application.
 The DSE test harness is controlled by an XML script
that specifies:
• the test runtime environment, including environment

variable settings
• a sequence of ingoing XML messages representing

requests made of the DSE
• a companion set of response messages that represent

the expected responses
The harness loads and runs the test script in a fresh session
of the DSE server. It captures the responses and the log
output, then scans the logs for warnings, errors, and excep-
tions, filters out trivial changes (e.g. run dates) and com-
pares the result messages against a baseline. The results are
reported to HTML files that can be viewed in a standard
web browser. Each test can be run separately as a JUnit
test, e.g. within an IDE, and the entire suite can be run
from an ant build script at the command shell. The latter is
also run from the DSE CruiseControl instance, which
builds and tests the system with each change to the source
code repository. All of the test scripts, input message files,
and baseline output messages are themselves checked into
the repository.
 Along with the harness we developed a test management
tool that can be run at any time to provide the status of all
the individual tests. This GUI highlights tests that are not
passing, shows the differences graphically, and allows for
immediate re-baselining of the response messages when a
change in the results has been verified as expected.
 A typical test sequence would incorporate several ele-
ments, depending on the intent of the test:
• for testing schedule conflicts, a set of scheduled activi-

ties specifying their time and resource assignments,
along with corresponding visibility intervals

• for testing treatment of scheduling requests, including
expansion or violation detection, one or more schedul-
ing requests, and visibility or other constraining event
intervals
− optionally, a pre-existing schedule could be pro-

vided, in case the interaction between request expan-
sion and existing activities is of interest

• for testing conflict resolution, schedule queries, and
similar functions, both requests and pre-existing sched-
ules would need to be sent to the DSE

A request message sent to the DSE can ask for any of
scheduled activities, conflicts, and request violations to be
returned. As a result, all of these can be captured after each
request message, and added to the baseline test result set.
 There currently exists a collection of ~40 example tests,
but this set is intended to be replaced with a more system-
atic and extensive set as development proceeds. Some
scheduling request language features have changed and are
expected to continue to evolve significantly through the
first few pilot releases of S3. All of the request language

features of Table 1 (and more not listed), as well as the
schedule conflict and violation types listed in Tables 2
and 3 will have corresponding tests. We expect the final
test set to number in the hundreds.

DSE Test Client GUI
From the initiation of the S3 project, precise requirements
for the scheduling engine component of the system have
been difficult to define. As a combined new software sys-
tem and user process, the DSN scheduling automation pro-
ject has had to work on both aspects at the same time, rec-
ognizing that the two are tightly connected. The scheduling
engine component has been particularly difficult to charac-
terize, since users interact with it only indirectly through
the S3 web application, and there is no existing DSN
scheduling request specification language to serve as a
point of comparison.
 In order to elicit timely feedback from expert scheduling
users, we have taken the approach of developing a standa-
lone test GUI for the DSE. DSN scheduling users can di-
rectly use this GUI to explore various aspects of DSE be-
havior, including:
• the scheduling request specification language — for

expressiveness and completeness
• expanding scheduling requests into empty and crowded

schedules
• conflict resolution when resource contention is high
• repairing scheduling requests that are in violation of the

request specification
The DSE test client is a Java application that allows users
to interactively define all of the separate elements that can
be used in scheduling requests, including viewperiods,

events, constraints and preferences, relationships among
requests, etc. Once a request is defined, it can be sent to the
scheduling engine for expansion into specific tracks. Users
can build up collections of requests and test them in iso-
lated schedules, or in combination on crowded schedules
where conflicts are certain to occur. They can then run the
DSE conflict resolution algorithms, and edit tracks to set
up “what if” scenarios. An example screen from the test
GUI is shown in Figure 6. The DSE test client uses the
same client library as the S3 web application, and thus
serves as a proxy for that component of the system while it
is under development.
 As a pathway for S3 users to gain understanding of the
functionality of the DSE and to provide feedback to the
development group, the test client has been very success-
ful. To date, two versions of the test client have been pro-
vided to DSN scheduling users, in January and July 2009,
from which a great deal of useful feedback has been ob-
tained, well over a year before deployment of the S3 sys-
tem. This has helped reduce the risk that key functionality
is being missed, and has also helped prompt consideration
of scheduling process changes that will be required as S3
moves toward deployment.
 One of the functions of the DSE test client is to capture
test configurations that can then be converted into test har-
ness cases, as described above. The “messages” tab of the
test GUI provides a running history of all communications
with the DSE, and any message or sequence of messages
can be captured for scripting in the test harness. The visual
feedback provided by the request editor and schedule
views are very useful in verifying that the test configura-
tion is as expected.
 By placing the DSE test client in the hands of users, with
a sufficiently high level of functionality, we had also in-

Figure. 6: a sample screen from the DSE test client, showing a schedule (left, Gantt view) generated from a list of scheduling
requests (right). Tracks shown in red are in conflict, while requests flagged with a red “X” are in violation. Users can choose
from a variety of strategies to repair the schedule, and can explicitly edit tracks to set up test situations to examine.

tended that it could be used to define and capture realistic
scheduling requests for flying missions. This would allow
us to validate that the overall scheduling request language
and DSE functionality is appropriate for DSN user needs.
In this it is been successful beyond any initial expectations:
it was adopted in January 2009 by one of the DSN schedul-
ing teams, the JPL Multi-mission Resource Scheduling
Services (MRSS) team, responsible for scheduling 20 of
the active users of the DSN. It has replaced a paper-and-
pencil process used before it was available, and has been
used to provide the basis for the initial integrated DSN
schedule for an increasingly large set of missions since
January 2009. As of July 2009 the test client is being used
to generate the initial integrated schedule for all DSN mis-
sions. In addition to providing a useful stepping stone to-
wards the full S3 functionality, this has provided an exten-
sive body of scheduling scenarios and test data encompass-
ing all DSN users that will enable a much broader level of
testing than would have been otherwise possible. As one
indication, over 5,000 scheduling requests have been cre-
ated using the DSE test client by the MRSS team, and
every actual and future DSN schedule since week 17 (late
April) of 2009 has been generated with input from the DSE
test client.

Validating Scheduling Requests
One of the challenges faced is validating scheduling re-
quests. As users are developing scheduling requests, re-
quests are susceptible to being infeasible and having no
solution. The set of reasons why requests may be infeasible
is too large to enumerate, but we provide several examples
that have already been encountered as users worked with
the test client:
• The requested tracking time exceeds the available an-

tenna view interval. A user may request 10 hours of
tracking time, but due to the specified quantization in
the request, the available maximum antenna view inter-
val is 9 hours, 55 minutes. Therefore, the request can-
not be strictly satisfied.

• The intersection of the events intervals and available
viewperiod intervals may be empty.

• During continuous tracking, where one contact must
overlap with another contact, the required overlap time
can exceed the available overlap between antennas.

The feasibility of these requests is evaluated by the DSE
test client library and by the scheduling engine. Since the
former has data structures required to display viewperiod
intervals and event intervals to the user, it is also capable of
performing simple request validation checks. In particular,
the test client can be used to determine if the maximum
duration antenna in view interval is shorter the minimum
request time. It can also be used to determine if the inter-
section of event intervals results in no valid intervals. By
performing these checks in the client code, it is easier to
provide immediate feedback to users about request valida-
tion problems while they are still editing them.

 These simple validation checks can also be done in the
DSE, along with validating more complex sets of requests.
For requests with timing constraints to other requests, the
DSE can be used to schedule these requests in isolation. If
the engine is not able to generate a set of legal tracks in an
isolated schedule, it is unlikely to find a solution in a more
congested schedule. If no solution is found, requests are
then flagged as being in violation and the user can diagnose
the problem. The DSE is able to provide some feedback to
the user to assist with this diagnosis, including the specific
timing and duration parameters that are not satisfied. How-
ever, in cases where multiple factors conspire to make a
request infeasible, the engine does not currently perform
any kind of root cause analysis to determine which aspects
of the request are overconstraining.

DSE and existing tools
In today’s DSN scheduling process, existing tools are re-
sponsible for some functions that will be taken over by S3
when it is deployed. One of the challenges will be to en-
sure that these existing tools and the DSE are consistent.
Scheduling requests are a new concept introduced to the
DSN scheduling process; therefore, there are no existing
tools to validate requests or check that they are satisfied.
There are however, tools available to check the schedule
for conflicts (see Table 2). The TMOD Integrated Ground
Resource Allocation System) (TIGRAS) (Borden et al.
1997) is a tool developed at JPL and currently used to to
display and edit schedules, as well as generate schedule
conflict reports. TIGRAS supports exporting and importing
schedules in a custom XML format. This format encapsu-
lates the schedule time bounds as well as each track in the
schedule.
 The DSE test client will be capable of exporting the
DSE generated schedule into this XML format, which can
then be imported into TIGRAS. In order to preserve the
relationship between tracks and requests, this mapping is
also exported to a persistent field. TIGRAS can then be
used to check the detected conflicts. If changes to the
schedule are performed in TIGRAS, the DSE test client
can also import schedules exported from TIGRAS. Once
imported into the DSE, tracks can then be validated against
their originating scheduling requests. The overall effect of
this round trip import/export to legacy tools is to increase
confidence that the new system is consistent and correct.

Shared ASPEN core testing
The underlying implementation of the DSE makes use of
the ASPEN framework and libraries. ASPEN is a generic
reusable automated planning and scheduling framework
that has been deployed for multiple projects, ranging from
traditional ground planning to planetary surface rovers to
onboard reactive planning (see e.g. Knight 2008; Estlin et
al. 2007; Chien et al. 2005). Each deployment shares the
same code base, with custom model-specific files devel-
oped for each mission. During the development phase of
the DSE, the latest version of ASPEN is used. There are

advantages and disadvantages to this approach. One main
advantage is that it allows us to leverage any improve-
ments to ASPEN developed for other projects. However, it
may introduce problems. Since the ASPEN development
team consists of members not associated with the DSE, we
must ensure that changes to the core do not adversely af-
fect the DSE deployment, as well as other deployments.
This is addressed with daily builds and test runs, as well as
using source control tools to tag and branch specific ver-
sion of the software.
 Nightly builds of ASPEN, across multiple operating
system and target platforms are performed to ensure the
code is always in a buildable state. In conjunction with
this, we also perform nightly regression runs of ASPEN
across a set of sample models. These regression tests en-
sure that changes to ASPEN maintain the same behavior
for each model, and also monitor for performance impacts
of any algorithm changes.
 ASPEN also uses several third-party tools to analyze the
code. The Rational tool suite of Purify, Quantify, and
PureCov is used to identify any memory issues, identify
runtime bottlenecks within the code, and ensure that all
sections of the code are executed. We also perform nightly
runs of the Coverity, a static code analyzer used to identify
sections of code that may pose a risk.
 During integration testing, we will need to limit the
changes to the ASPEN core code to ensure tests are repro-
ducible and fixes are focused. We will take the standard
approach of branching the code from the mainline. This
allows development to continue on the mainline, while
testers have a static version to test and identify problems.
Changes to the branched version can be made to resolve
any problems that arise, and these changes can then be
selectively merged back into the mainline. Likewise, se-
lected fixes and improvements on the mainline can be in-
corporated into the branch.

DSE Testing Under Operational Loading Levels
The deployment environment planned for the DSE in-
cludes a number of high-end server hosts that will be part
of the SPS internet portal (see Figure 1 for an illustrative
view). Current plans call for hosts in the class of Sun Fire
X4450 servers, each with 24 total cores and 128GB of
memory. Each host of this class is expected to support in
the range of 50-100 separate DSE server (AMA) instances.
One of the current development challenges is assessing the
performance under load of a configuration containing sev-
eral of these host servers.
 The DSE infrastructure design allows for server in-
stances to register their availability with the Schedule
Manager Application (SMA), which then balances and
assigns client session initiation requests to available serv-
ers. Once assigned, the client communicates directly with
the assigned engine instance, using the messaging middle-
ware (currently JMS). A typical usage pattern would be for
a client to load a schedule and all of its auxiliary data
(viewperiods, events, requests, etc.), and then perform in-
cremental operations on the resulting in-memory model

(resolve conflicts, modify requests or tracks, etc.) Server
sessions time out after some adjustable period of idle time,
and can also be terminated explicitly, e.g. when a user logs
out or closes the last view of a particular schedule.
 While there exist load testing tools for web browser
based server applications, there are no comparable tools for
applications with custom middleware infrastructure such as
the DSE. Consequently we are developing a loading test
driver that can simultaneously initiate many sessions and
funnel requests to the DSE, verify responses, and record
timing data for analysis. Preliminary results suggest that
the JMS messagebus may act as a bottleneck, but more
detailed performance monitoring is needed before defini-
tive conclusions can be drawn.

Conclusions
We have described a NASA Deep Space Network schedul-
ing application, currently under development for opera-
tional deployment at the end of 2010. We have focused on
the scheduling engine component of the overall system, as
primarily responsible for the interpretation and processing
of user scheduling requests. The development, integration,
and deployment of this system faces numerous challenges
in order to be ready for operational use when planned.
Since the DSN is a current operational system, we have
demonstrated compatibility with existing tools to validate
schedules and thus build confidence in the system. Also,
active engagement with future users of the system, along
with access to prototype system elements, has been ex-
tremely fruitful in terms of making sure that the system
development is on a path to meet user needs.

The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. We gratefully acknowledge the contribu-
tions and feedback from the DSN scheduling community
and especially the MRSS team.

References
 Borden, C.; Wang, Y.-F.; and Fox, G. 1997. Planning and
scheduling user services for NASA’s deep space network.
In 1997 Int. Conf. on Planning and Scheduling for Space
Expl.
 Calzolari, G.; Beck, T.; Doat, Y.; Unal, M.; Dreihahn,
H.; and Niezette, M. 2008. From the EMS concept to op-
erations: First usage of automated planning and scheduling
at ESOC. In SpaceOps 2008.
 Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Eng-
elhardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Bar-
rett, T.; Stebbins, G.; and Tran, D. 2000. ASPEN - automat-
ing space mission operations using automated planning and
scheduling. In SpaceOps 2000.
 Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau,
G., Castano, A., Davies, D., Mandl, D., Frye, S., Trout, B.,

Shulman, S., and Boyer, D. 2005, Using Autonomy Flight
Software to Improve Science Return on Earth Observing
One, Journal of Aerospace Computing, Information, and
Communication.
 Clement, B. J., and Johnston, M. D. 2005. The deep
space network scheduling problem. In Innovative Applica-
tions of Artificial Intelligence (IAAI). Pittsburgh, PA:
AAAI Press.
 Estlin, T. , Gaines, D., Chouinard, C. , Castano, R.,
Bornstein, B., Judd, M., Nesnas, I. and Anderson, R. C.,
2007, Increased Mars Rover Autonomy using AI Planning,
Scheduling and Execution, Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA
2007), Rome, Italy.
 Imbriale, W. A. 2003. Large Antennas of the Deep Space
Network. Wiley.
 Johnston, M.D., Tran, D., Arroyo, B., and Page, C. 2009,
Request-Driven for NASA’s Deep Space Network. In In-
ternational Workshop on Planning and Scheduling for
Space (IWPSS), Pasadena, CA.
 Knight, R. 2008, Automated Planning and Scheduling
for Orbital Express, International Symposium on Artificial
Intelligence, Robotics and Automation in Space
(ISAIRAS)

